Introduction

The relevance of gem-dihydroperoxides to peroxidic anti-
malarial agents stimulated initial interest in this class of
compounds.1–5 Apart from their biological activities,6,7
gem-dihydroperoxides have been established as important
building blocks in synthetic chemistry, for example the
preparation of organic peroxides, trioxanes, tetraoxanes,
spirobisperoxyketals, and dicarboxylic diesters.4,7,8

gem-Dihydroperoxides can also be employed as oxidizing
agents under various conditions to perform transforma-
tions such as epoxidation1–5 and sulfoxidation.2–5,9 In ad-
dition, in situ decomposition of gem-dihydroperoxides
can generate singlet oxygen as the active oxidant8,10 in
olefin oxidation, for example.11 The ability of gem-di-
hydroperoxides to generate radicals allows them to be fur-
theremore exploited as radical initiators,2–5 for example
methyl ethyl ketone peroxide is used in the manufacturing
of acrylic resins, reinforced plastics, and unsaturated
polyester resins.6

Itoh and co-workers established two catalyst-free prepar-
ative protocols for gem-dihydroperoxides, of which the
one employs hydrogen peroxide12 as terminal oxidant and
the other molecular oxygen.13,14 The latter is achieved in
combination with a photosensitizer (anthracene13 or
anthraquinone14) and exposure of the reaction mixture to
light. Reaction times can generally be reduced upon introduc-
tion of a catalyst, amongst which molecular iodine15
as well as numerous transition-metal Lewis acids have
proven effective.4,5,8,16,17 Brønsted acids are comparably
active as either homogeneous (sulfuric acid3) or heteroge-
neous catalysts, for example silica-sulfuric acid2 or triflic-
acid-functionalized silica-coated ferromagnetic nanopar-
ticles.18

Abstracts

(A) Dussault and co-workers19 prepared primary and secondary al-
ky al hydroperoxides in moderate to high yields (48–79%) via double
alkylation of 1,1-dihydroperoxides, followed by acid-catalyzed hy-
drolysis of the resulting strained cyclic alkylated gem-bishydroper-
oxides (bisperoxyacetals).

(B) 1-Hydroxy-1′-alkoxyperoxides were prepared by Terent’ev et
al.6 in moderate yield (40–64%) through iodine-catalyzed cross-cou-
pling of gem-bishydroperoxides and acetals. This cross-coupling is
also effective upon substitution of the acetal with an enol ether.

(C) Symmetrical and asymmetrical tetraoxanes can be prepared
from gem-dihydroperoxides. The combination of a gem-dihydroper-
oxide and its carbonyl analogue in the presence of fluoroboric acid
and hydrogen peroxide favors formation of symmetrical tetra-
oxanes.20 Similarly, asymmetrical tetraoxanes are obtained when
two non-identical carbonyl compounds are introduced.7

SYNLETT 2014, 25, 1629–1630
Advanced online publication: 20.05.2014
© Georg Thieme Verlag Stuttgart · New York
(D) Jakka et al.1 reported the epoxidation of various \(\alpha,\beta\)-unsaturated ketones utilizing cyclohexylidene-bishydroperoxide as a stoichiometric oxidant under Weitz–Scheffer reaction conditions (aqueous, alkaline).

(E) Sulfoxidation of thiophenol ethers can be achieved under neutral conditions at ambient temperature, producing sulfoxides in high yields (79–93%) in less than two hours.9

(F) Subsequent to observing the oxidation of triphenylphosphine to triphenylphosphine oxide in the presence of 1,1-dihydroperoxy-cyclohexodecane, Sekine and co-workers21 prepared oligodeoxyribonucleotides in a similar fashion via the oxidation of phosphite intermediates to their respective phosphate analogues.

(G) Dussault and co-workers reported the liberation of singlet oxygen when monoactivated gem-dihydroperoxide derivatives were exposed to anhydrous alkaline conditions.22 If this degradation is performed in the presence of an organic substrate, an oxidative transformation of the substrate is observed.10 This protocol also allows for oxidative cleavage of olefinic substrates to yield aldehydes or ketones in moderate to high yields (35–82%).11

\begin{align*}
\text{R} & \quad \text{aq. KOH, 1,4-dioxane} \\
& \quad \text{r.t., 0.5–5 h} \\
\text{11} & \quad \text{12} \\
\text{13} & \quad \text{14} \\
& \quad \text{CH}_2\text{Cl}_2 \\
& \quad \text{r.t., 0.5–2 h} \\
\text{15a} & \quad \text{15b} \quad \text{15c} \\
\text{15} & \quad \text{16} \\
& \quad \text{17} \\
& \quad \text{18} \\
& \quad \text{19} \\
& \quad \text{20} \\
& \quad \text{10 min} \\
& \quad \text{21} \\
& \quad \text{22} \\
& \quad \text{23} \\
& \quad \text{24} \quad \text{(82%)}
\end{align*}

References