Introduction

The relevance of gem-dihydroperoxides to peroxodic antimarial agents stimulated initial interest in this class of compounds.\(^1\)–\(^5\) Apart from their biological activities,\(^6\)–\(^7\) gem-dihydroperoxides have been established as important building blocks in synthetic chemistry, for example the preparation of organic peroxides, trioxanes, tetraoxanes, spirobisperoxyketal, and dicarboxylic diesters.\(^4\)–\(^7\)\(^,\)**\(^8\)**\(\text{gem-}\)Dihydroperoxides can also be employed as oxidizing agents under various conditions to perform transformations such as epoxidation\(^1\)–\(^5\) and sulfoxidation.\(^2\)–\(^5\)\(^,\)**\(^9\)** In addition, in situ decomposition of gem-dihydroperoxides can generate singlet oxygen as the active oxidant\(^8\)\(^,\)**\(^10\)** in olefin oxidation, for example.\(^11\)** The ability of gem-dihydroperoxides to generate radicals allows them to be furthermore exploited as radical initiators,\(^2\)–\(^5\) for example methyl ethyl ketone peroxide is used in the manufacturing of acrylic resins, reinforced plastics, and unsaturated polyester resins.\(^6\)**

Reaction times can generally be reduced upon introduction of a catalyst, amongst which molecular iodine\(^15\)** as well as numerous transition-metal Lewis acids have proven effective.\(^4\)–\(^5\)\(^,\)**\(^8\)–\(^16\)\(^,\)**\(^17\)** Brønsted acids are comparably active as either homogeneous (sulfuric acid\(^3\)) or heterogeneous catalysts, for example silica-sulfuric acid\(^2\) or triflic-acid-functionalized silica-coated ferromagnetic nanoparticles.\(^18\)**

Abstracts

(A) Dussault and co-workers\(^19\)** prepared primary and secondary alkyl hydroperoxides in moderate to high yields (48–79%) via double alkylation of 1,1-dihydroperoxides, followed by acid-catalyzed hydrolysis of the resulting strained cyclic alkylated gem-bishydroperoxides (bisperoxyacetals).

(B) 1-Hydroxy-1′-alkoxyperoxides were prepared by Terent’ev et al.\(^6\)** in moderate yield (40–64%) through iodine-catalyzed cross-coupling of gem-bishydroperoxides and acetals. This cross-coupling is also effective upon substitution of the acetal with an enol ether.

(C) Symmetrical and asymmetrical tetraoxanes can be prepared from gem-dihydroperoxides. The combination of a gem-dihydroperoxide and its carbonyl analogue in the presence of fluoroboric acid and hydrogen peroxide favors formation of symmetrical tetraoxanes.\(^20\)** Similarly, asymmetrical tetraoxanes are obtained when two non-identical carbonyl compounds are introduced.\(^7\)**
(D) Jakka et al.1 reported the epoxidation of various \(\alpha,\beta\)-unsaturated ketones utilizing cyclohexyldiene-bishydroperoxide as a stoichiometric oxidant under Weitz–Scheffer reaction conditions (aqueous, alkaline).

\[
\text{R} \begin{array}{c}
\text{H} \\
\text{R} \\
\end{array} \begin{array}{c}
\text{O} \\
\text{OH} \\
\end{array} \rightarrow \begin{array}{c}
\text{CH}_2 \text{CH}_2 \\
\text{Cl} \\
\end{array} \begin{array}{c}
\text{H} \\
\text{O} \\
\end{array}
\]

(E) Sulfoxidation of thiophenol ethers can be achieved under neutral conditions at ambient temperature, producing sulfoxides in high yields (79–93\%) in less than two hours.9

\[
\begin{array}{c}
\text{R} \\
\end{array} \begin{array}{c}
\text{H} \\
\text{R} \\
\end{array} \begin{array}{c}
\text{OH} \\
\text{OH} \\
\end{array} \rightarrow \begin{array}{c}
\text{Me} \\
\end{array} \begin{array}{c}
\text{Cl} \\
\text{Me} \\
\end{array}
\]

(F) Subsequent to observing the oxidation of triphenylphosphine to triphenylphosphine oxide in the presence of 1,1-dihydroperoxy-cycloododecane, Sekine and co-workers21 prepared oligodeoxyribonucleotides in a similar fashion via the oxidation of phosphate intermediates to their respective phosphate analogues.

\[
\begin{array}{c}
\text{R} \\
\text{R} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{P} \\
\text{B} = \text{nucleobase}
\end{array} \begin{array}{c}
\text{MeCN}, 0 \degree\text{C} \\
\text{aq KOH–1,4-dioxane} \\
\text{r.t., 0.5–5 h} \\
\text{CH}_2\text{Cl}_2–\text{EtOAc (9:1)} \\
\text{r.t., 0.5–2 h} \\
\text{CH}_2\text{Cl}_2–\text{DMSO} (9:1) \\
\text{r.t., 90 s}
\end{array}
\]

(G) Dussault and co-workers reported the liberation of singlet oxygen when monoactivated \(gem\)-dihydroperoxide derivatives were exposed to anhydrous alkaline conditions.22 If this degradation is performed in the presence of an organic substrate, an oxidative transformation of the substrate is observed.10 This protocol also allows for oxidative cleavage of olefinic substrates to yield aldehydes or ketones in moderate to high yields (35–82\%).11

\[
\begin{array}{c}
\text{R} \\
\text{R} \\
\text{C} = \text{O} \\
\text{HO} \\
\text{Ph} \\
\text{Ph} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{P} \\
\text{B} = \text{nucleobase}
\end{array} \begin{array}{c}
\text{MeCN}, 0 \degree\text{C} \\
\text{TBAF} \\
\text{1O}_2 \\
\text{iso-pentyl (93\%)}
\end{array}
\]

References