Synlett 2014; 25(12): 1697-1700
DOI: 10.1055/s-0034-1378203
letter
© Georg Thieme Verlag Stuttgart · New York

Convenient Access to Cycloalk-2-enone-Derived N-Sulfonyl Imines

Sebastian Hirner
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany   Fax: +49(6421)2825362   Email: zezschwitz@chemie.uni-marburg.de
,
Johannes Westmeier
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany   Fax: +49(6421)2825362   Email: zezschwitz@chemie.uni-marburg.de
,
Sandra Gebhardt
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany   Fax: +49(6421)2825362   Email: zezschwitz@chemie.uni-marburg.de
,
Christian H. Müller
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany   Fax: +49(6421)2825362   Email: zezschwitz@chemie.uni-marburg.de
,
Paultheo von Zezschwitz*
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany   Fax: +49(6421)2825362   Email: zezschwitz@chemie.uni-marburg.de
› Author Affiliations
Further Information

Publication History

Received: 24 February 2014

Accepted after revision: 02 May 2014

Publication Date:
28 May 2014 (online)


Abstract

The first synthesis of N-tosyl imines from various cyclopent-2-enones and cyclohex-2-enones was achieved by direct condensation with tosyl amide in the presence of TiCl(OEt)3 and Et3N. In addition, N-tert-butylsulfonyl imines from five- to seven-membered cycloalk-2-enones were obtained through formation of the ­respective oximes and subsequent Hudson reaction. These compounds are easy to handle solids and they are interesting starting materials for a variety of transformations.

Supporting Information

 
  • References and Notes

    • 1a Weinreb SM. Top. Curr. Chem. 1997; 190: 131
    • 1b Shukla DK. Synlett 2009; 1859
    • 1c Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 1d Monbaliu J.-CM, Masschelein KG. R, Stevens CV. Chem. Soc. Rev. 2011; 40: 4708
  • 2 For a calculation of the LUMO energies of benzaldehyde and various derived imines, see: Charette A. In Chiral Amine Synthesis . Nugent TC. Wiley-VCH; Weinheim: 2010: 1-49
    • 3a Vishwakarma LC, Stringer OD, Davis FA. Org. Synth. 1988; 66: 203
    • 3b Jennings WB, Lovely CJ. Tetrahedron 1991; 47: 5561
    • 3c Love BE, Raje PS, Williams TC. Synlett 1994; 493
    • 3d Ram RN, Khan AA. Synth. Commun. 2001; 31: 841
    • 3e Lee KY, Lee CG, Kim JN. Tetrahedron Lett. 2003; 44: 1231

      For alternative approaches, see:
    • 4a Albrecht R, Kresze G, Mlakar B. Chem. Ber. 1964; 97: 483
    • 4b Davis FA, Lamendola J, Nadir U, Kluger EW, Sedergran TC, Panunto TW, Billmers R, Jenkins R, Turchi IJ, Watson WH, Chen JS, Kimura M. J. Am. Chem. Soc. 1980; 102: 2000
    • 4c Trost BM, Marrs C. J. Org. Chem. 1991; 56: 6468
    • 4d Georg GI, Harriman GC. B, Peterson SA. J. Org. Chem. 1995; 60: 7366
    • 4e Chemla F, Hebbe V, Normant J.-F. Synthesis 2000; 75
    • 5a Brown C, Hudson RF, Record KA. F. J. Chem. Soc., Perkin Trans. 2 1978; 822
    • 5b Boger DL, Corbett WL, Curran TT, Kasper AM. J. Am. Chem. Soc. 1991; 113: 1713
    • 5c Artman GD, Bartolozzi A, Franck RW, Weinreb SM. Synlett 2001; 232
  • 6 Boger DL, Corbett WL. J. Org. Chem. 1992; 57: 4777
  • 7 Wolfe JP, Ney JE. Org. Lett. 2003; 5: 4607
    • 8a Wohl RA. J. Org. Chem. 1973; 38: 3862
    • 8b Abramovitch RA, Knaus GN, Pavlin M, Holcomb WD. J. Chem. Soc., Perkin Trans. 1 1974; 2169
  • 9 Patel R, Srivastava VP, Yadav LD. S. Adv. Synth. Catal. 2010; 352: 1610
    • 10a Ruano JL. G, Alemán J, Cid MB, Parra A. Org. Lett. 2005; 7: 179
    • 10b Yang Q, Shang G, Gao W, Deng J, Zhang X. Angew. Chem. Int. Ed. 2006; 45: 3832
    • 10c Chen S, Zhao Y, Wang J. Synthesis 2006; 1705
    • 11a Siewert J, Sandmann R, von Zezschwitz P. Angew. Chem. Int. Ed. 2007; 46: 7122
    • 11b Kolb A, Hirner S, Harms K, von Zezschwitz P. Org. Lett. 2012; 14: 1978
    • 11c Kolb A, Zuo W, Siewert J, Harms K, von Zezschwitz P. Chem. Eur. J. 2013; 19: 16366
    • 11d Westmeier J, Pfaff C, Siewert J, von Zezschwitz P. Adv. Synth. Catal. 2013; 355: 2651
    • 12a McMahon JP, Ellman JA. Org. Lett. 2005; 7: 5393
    • 12b Sirvent JA, Foubelo F, Yus M. Chem. Commun. 2012; 48: 2543
  • 13 The E/Z configuration of imines 2 was assigned based on NOE signals between the aromatic protons and either the proton(s) at C-6 or C-2, respectively. Moreover, the proton(s) at either C-6 or C-2 are deshielded in the case of (E)-2a or (Z)-2a, respectively.
  • 14 Lin Y.-D, Kao J.-Q, Chen C.-T. Org. Lett. 2007; 9: 5195
  • 15 Acyclic aliphatic enones such as butenone or (E)-5-methylhex-3-en-2-one decomposed under these conditions. For a synthesis of the N-phenylsulfonyl imine of butenone by Hudson reaction in a 15% yield, see reference 5b.
  • 16 Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis . John Wiley & Sons, Inc; Hoboken: 2007. 4th ed
  • 17 Sun P, Weinreb SM, Shang M. J. Org. Chem. 1997; 62: 8604
  • 18 Bergström MA, Andersson SI, Broo K, Luthman K, Karlberg A.-T. J. Med. Chem. 2008; 51: 2541
    • 19a Hutchins RO, Adams J, Rutledge MC. J. Org. Chem. 1995; 60: 7396
    • 19b Hutchins RO, Rao SJ, Adams J, Hutchins MK. J. Org. Chem. 1998; 63: 8077
  • 20 N-(Cyclohex-2-en-1-ylidene)-4-methylbenzene-sulfonamide (2a); Typical Procedure: To a solution of TiCl(OEt)3 (4.37 g, 20.0 mmol) in toluene (10 mL) was added Et3N (2.79 mL, 20.0 mmol). The resulting mixture was stirred for 5 min at r.t. before TsNH2 (3.42 g, 20.0 mmol) was added, and the reaction mixture was heated to reflux for 15 min. A solution of 1a (961 mg, 10.0 mmol) in toluene (20 mL) was added dropwise over 15 min to the refluxing solution, and stirring was continued for 1 h. The reaction mixture was poured into a stirred and precooled (0 °C) suspension of NaHCO3 (5.0 g) in acetone–H2O (200 mL, 100:1), diluted with pentane (100 mL), dried over MgSO4, and filtered. The filtrate was concentrated under reduced pressure, and the crude product was purified by flash chromatography (CH2Cl2; R f = 0.26) on silica gel to furnish ketimine 2a (1.65 g, 66%) as a pale-yellow oil that crystallized in the freezer. 1H NMR (300 MHz, CDCl3): δ (62:38 E/Z-ratio, asterisk denotes minor isomer peaks) = 7.86 (mc, 2 H), 7.32 (mc, 2 H), 7.32* (mc, 1 H), 6.94 (mc, 1 H), 6.14 (dt, J = 10.0, 1.9 Hz, 1 H), 3.18 (mc, 2 H), 2.54* (mc, 2 H), 2.43 (s, 3 H), 2.40–2.30 (m, 2 H), 2.01–1.90 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 180.1, 178.0*, 151.6*, 150.6, 143.4, 138.6, 130.1, 129.4, 127.1*, 127.0, 124.1*, 35.5*, 31.4, 26.0*, 25.2, 22.1*, 21.53, 21.49. HRMS (ESI+): m/z [M + Na]+ calcd. for C13H15NO2SNa: 272.0716; found: 272.0711. N-(Cyclohex-2-en-1-ylidene)-tert-butanesulfonamide (3a); Typical Procedure: To a solution of 1a (500 mg, 5.20 mmol) in MeOH–H2O (9:1, 5.0 mL) in a 10 mL microwave reaction vessel were added hydroxylamine hydrochloride (398 mg, 5.72 mmol) and sodium acetate (512 mg, 6.24 mmol). The vessel was sealed, and the mixture was heated in a microwave reactor at 135 °C for 5 min and then cooled to r.t. The reaction mixtures of three such batches were combined, poured into H2O (30 mL) and extracted with CHCl3 (3 × 30 mL). The combined organic phases were washed with sat. NaHCO3 (3 × 30 mL), dried over MgSO4, and concentrated under reduced pressure to give the crude oxime (1.70 g). The crude oxime was dissolved in Et2O (30 mL), Et3N (3.18 mL, 23.0 mmol) was added, and the solution was cooled to –35 °C. Then, tert-butylsulfinyl chloride (4.28 g, 30.6 mmol) was added dropwise, and the resulting suspension was stirred at –35 °C for 1.5 h before the cooling bath was removed. Stirring was continued for 16 h, and the reaction mixture was then filtered over Celite and concentrated under vacuum. Purification by flash chromatography (pentane–EtOAc, 5:1; R f = 0.38) on silica gel furnished ketimine 3a (1.62 g, 48%) as a pale-yellow oil that crystallized in the freezer. 1H NMR (300 MHz, CDCl3): δ (62:38 E/Z-ratio, asterisk denotes minor isomer peaks) = 7.12* (dt, J = 10.2, 2.0 Hz, 1 H), 6.90–6.80 (m, 1 H), 6.12 (dt, J = 10.0, 2.0 Hz, 1 H), 3.04 (t, J = 6.7 Hz, 2 H), 2.51* (t, J = 6.7 Hz, 2 H), 2.35–2.25 (m, 2 H), 1.97–1.83 (m, 2 H), 1.42 (s, 9 H). 13C NMR (75.5 MHz, CDCl3): δ = 180.7, 178.7*, 150.4*, 149.8, 130.2, 124.5*, 58.7, 35.5*, 31.5, 26.0*, 25.2, 23.9, 22.2*, 21.5. HRMS (ESI+): m/z [M + H]+ calcd. for C10H18NO2S: 216.1053; found: 216.1054.