Extracorporeal shock wave lithotripsy as a rescue for a trapped stone basket in the pancreatic duct

A 45-year-old woman was admitted to our department because of intermittent upper abdominal pain in the previous 2 years. Computed tomography (CT) and magnetic resonance imaging (MRI) revealed a greatly dilated pancreatic duct with multiple radiopaque stones, which confirmed the diagnosis of chronic pancreatitis (Fig. 1 a, b).

We performed extracorporeal shock wave lithotripsy (ESWL) using a third-generation lithotripter (Delta Compact II; Dornier Med Tech, Wessling, Germany). The patient received combined flurbiprofen and remifentanil via intravenous infusion for analgesia. ESWL was performed starting from the pancreatic head to the tail. Up to 5000 shocks were delivered per therapeutic session at an intensity of 6 (16000 kV) on a scale of 1 to 6, with a frequency of 120 shocks/min. Repeat sessions of ESWL were done on three successive days.

Most of the pancreatic stones were pulverized; however, a residual stone with a diameter of about 0.7 cm was left (Fig. 2 a). The location of the stone changed after hundreds of shocks and the targeting of the shock waves was repeatedly recalibrated. The stone was not significantly more pulverized with the fourth and fifth ESWL sessions (Fig. 2 b), even after we tried changing the angles of the generator and the position of the patient. Therefore, we decided to perform endoscopic retrograde cholangiopancreatography (ERCP) to remove the residual stone.

After sphincterotomy, the pancreatic orifice was widened to 0.8 cm via balloon sphincteroplasty at the minor papilla. Unfortunately, the residual stone was stuck near the pancreatic orifice at the papilla when we tried to remove it using a basket. Mechanical lithotripsy (through-the-scope) also failed. We set the basket at its tight mode to fix the position of the residual stone near the pancreatic orifice at the papilla (Fig. 3 a). We then cut off the handle of the basket, and withdrew the duodenoscope. After ESWL, we attempted to drag out the basket directly, but considerable resistance was encountered. Because of the fear that the stone fragments might injure the pancreatic duct or the gastrointestinal tract, we performed a second ERCP. We used a sphincterotome to disperse the pulverized stone in the basket and dragged it out.

Fig. 1 A significantly dilated pancreatic duct with multiple radiopaque stones seen at: a computed tomography (CT); b magnetic resonance imaging (MRI).

Fig. 2 a A residual stone (white arrow) with a diameter of about 0.7 cm, that was hard to target after three sessions of endoscopic shock wave lithotripsy (ESWL). b The stone (white arrow) was not significantly pulverized after the fourth and fifth ESWL sessions.
tract if forcibly pulled out, we performed a second ERCP. We used a sphincterotome to disperse the pulverized stone in the basket and dragged it out (Video 2).

Competing interests: None

Liang-Hao Hu1,*, **Ting-Ting Du**1,*, **Zhuan Liao**1,*, **Wen-Bin Zou**2, **Bo Ye**2, **Zhao-Shen Li**1

1 Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
2 Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University, Shanghai, China

Bibliography

Endoscopy 2014; 46: E332–E333
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author

Zhao-Shen Li, MD
Department of Gastroenterology
Changhai Hospital
Second Military Medical University
168 Chang-hai Road
Shanghai 200433
China
Fax: +86-21-55620081
zhaoshen-li@hotmail.com

* Liang-Hao Hu, Ting-Ting Du, and Zhuan Liao contributed equally to this work.

Fig. 3 a A basket was used to collect the residual stone, and was then tightened to fix the position of the residual stone near the pancreatic orifice at the papilla. b The stone was significantly pulverized after the sixth ESWL.

Fig. 4 The handle of the basket was cut off and the duodenoscope was withdrawn. The basket remained in the pancreatic duct, and the stub was clipped by a vascular clamp.