Formononetin Inhibits Migration and Invasion of MDA-MB-231 and 4T1 Breast Cancer Cells by Suppressing MMP-2 and MMP-9 Through PI3K/AKT Signaling Pathways

Abstract

Formononetin is a naturally existing isoflavone, which can be found in the roots of Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata. It was found to be associated with inhibition of cell proliferation and cell cycle progression, as well as induction of apoptosis in various cancer cell lines. However, the effect of formononetin on breast cancer cell metastasis remains unclear. In this study, we examined the effect of formononetin on the migration and invasion of breast cancer cells MDA-MB-231 and 4T1 in vitro and in vivo. Our data demonstrated that formononetin did not effectively inhibit the cell viability of MDA-MB-231 and 4T1 in 24 h with the concentration lower than 160 μmol/l. When treated with nontoxic concentration of formononetin, the migration and invasion of MDA-MB-231 and 4T1 cells were markedly suppressed by wound healing assay, chamber invasion assay, and in vivo mouse metastasis model. In vitro, formononetin reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, the immunofluorescence and immunoblotting assays indicated that formononetin was very effective in suppressing the phosphorylation of Akt and PI3K. Collectively, these results suggest that formononetin inhibited breast cancer cell migration and invasion by reducing the expression of MMP-2 and MMP-9 through the PI3K/AKT signaling pathway. These findings demonstrate a potentially new therapeutic strategy of formononetin as anti-invasive agent for breast cancer.

Introduction

Breast cancer is the most common malignancy among women worldwide. Each year, an estimated nearly 1.4 million patients are diagnosed with breast cancer globally with more than 450,000 deaths each year [1]. Approximately 10–20% of breast cancer cases are in the category of triple-negative phenotype, namely the absence of estrogen receptor-α, progesterone receptor, or amplification of epidermal growth factor receptor [2]. Patients with triple-negative breast cancer have a very poor disease-free survival because these tumors are aggressive and associated with a high rate of metastasis compared with other types [3,4]. Metastasis is a multistep process, which includes detachment of cancer cells from primary tumor, migration, adhesion, and invasion of cancer cells into the blood or lymphatic vessels. The help of matrix metalloproteinases (MMPs) is required for extravasation out of the vessel, leading to the movement of cancer cells to the target tissue. Among all MMPs, MMP-2 and MMP-9, known as key enzymes in the degradation of type IV collagen, are overexpressed in breast cancer cells [5,6] and their elevated expression has been associated with poor prognosis [7]. Thus, MMPs could work as pivotal targets for suppressing breast cancer invasion and metastasis, and the inhibition of MMPs may have considerable advantages in cancer therapy [8]. The discovery of novel compounds with low toxicity and excellent potential for cancer chemoprevention or treatment is an important step of cancer therapy development. Formononetin (7-hydroxy-4′-methoxyisoflavone), an herbal isoflavone, is a major compound in the roots of Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobata. It has been proved to have immunomodulatory, antitumorigenic, hypolipi-
demic, antioxidant, antiviral, cardioprotective, and estrogenic activities [9–15]. Moreover, formononetin exhibits cytotoxic activity on LNCaP and PC-3 (prostate cancer) [16], MDA-MB-435 and MCF-7 (breast cancer) [17,18], HuH-7 (liver cancer) [19], SGC-7901 (gastric cancer) [12], as well as HeLa (cervical cancer), and HCT-116 (colon cancer) [20] cancer cell lines. Treatment of human breast cancer cells (MCF-7) with formononetin led to a significant decrease in cyclin D1 protein and gene expression, which was found to be associated with IGF1/Pi3K/Akt pathways [17]. In addition, numerous studies have revealed that formononetin inhibits growth in various cancer types in vivo [17,20,21]. However, it remains unclear whether formononetin will be effective in inhibiting breast cancer cell metastasis. MDA-MB-231 triple-negative breast cancer cell, a highly metastatic human breast carcinoma cell line, is derived from a metastatic plural e

Materials and Methods

Materials

Formononetin was purchased from Phytomarker Ltd. (Tianjin, China). It was dissolved in dimethyl sulfoxide (DMSO) and stored at 4 °C for further use. Penicillin, streptomycin, phosphate-buffered saline (PBS), trypsin-EDTA, DMEM, RPMI 1640, and fetal bovine serum (FBS) were obtained from Invitrogen (Carlsbad, CA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 4,6-diamidino-2-phenylindole (DAPI) were purchased from Sigma (St. Louis, MO, USA). Invasion chamber and matrigel were obtained from BD transduction Laboratories (Hercules, CA, USA). Cells were purchased from ATCC (Manassas, VA, USA). The cell line was cultured in RPMI 1640 medium supplemented with 10% FBS, 2% HEPES, 2% sodium pyruvate, and 1% penicillin-streptomycin antibiotic mixture. The cells were cultured according to the protocol provided by the ATCC company.

Cell growth inhibition assay

Cell viability was measured by the MTT assay. MDA-MB-231-luc and 4T1 cells were seeded into 96-well plates at a density of 5 × 10³ cells per well. After 24 h of incubation, the cells were treated with vehicle (0.1 % DMSO) or a series of concentrations of formononetin for 24 h. MTT solution was added to each well (1.2 mg/ml) and incubated for 4 h. The concentration of MTT-formazan product dissolved in DMSO was estimated by measuring absorbance at 490 nm in an absorbance microplate reader.

Wound-healing assay

Cells were seeded in 1 × 10⁵ cells/ml and grown to 80–90% confluence in a 12-well plate at 37°C, 5 % CO₂ incubator. The monolayers were scratched with a 10 μl sterile pipette tip, washed twice with PBS to remove floating cell debris, and then replaced with complete DMEM. MDA-MB-231-luc and 4T1 cells were treated with formononetin (0, 2.5, 5, 10, 20, and 40 μmol/l) and incubated for 12 h. Cell migration into the wound area was photographed under an inverted microscope. Migrated cells across the blue lines were calculated in 6 random fields from each triplicate treatment, and the data were presented as mean ± SD.

Cell invasion assay

The invasive abilities of MDA-MB-231-luc and 4T1 cells were tested using cell invasion chamber kit. In brief, cells were treated with various concentrations of formononetin. After 12 h, cells were detached by trypsin and resuspended in a serum-free DMEM (5 × 10⁴ cells/100 μl). The cells were seeded into the upper chamber of Matrigel-coated filter and a DMEM or RPMI 1640 containing 10 % FBS of 500 μl was added to the lower chamber. The chamber was incubated 37 °C for 6 h. At the end of incubation, the noninvading cells in the upper surface of the filter membrane were carefully removed with a cotton swab. The invading cells on the lower surface of the filter membrane were fixed with 4% paraformaldehyde for 10 min and stained with crystal violet for 10 min and rinsed with water. The invasive cells on the lower surface of filter membrane were counted with a light microscope.

Western blot analysis

After treatment with various doses of formononetin for 12 h, the MDA-MB-231-luc and 4T1 cells were lysed with RIPA buffer containing protease and phosphatase inhibitors. The protein concentrations were measured with a BCA kit (Beyotime, China). Equal amounts of protein were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene fluoride (PVDF) membrane. The membrane was blocked with a solution containing 5 % nonfat dry milk TBST buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 0.1 % Tween 20) for 1 h. The indicated primary antibodies were incubated overnight at 4 °C, washed, and monitored by immunoblotting using a DyLight 800-conjugated secondary antibody.
The membrane was scanned using a LI-COR Infrared Imaging Odyssey (Gene Company Limited).

Real-time quantitative PCR
MDA-MB-231-luc and 4T1 cells were treated with different concentrations of formononetin for 12 h and total RNA was isolated using the Trizol reagent according to manufacturer’s protocol. The RNA concentrations were quantified with the Qubit Fluorometer. Real Time PCR (RT-PCR) was carried out using 1 μg of total RNA, which was reverse transcribed into complementary DNA using the QuantiTect Reverse Transcription Kit according to the manufacturer’s instructions. Quantitative RT-PCR was performed using the QuantiTect SYBR Green RT-PCR Kit. The PCR protocol conditions were as follows: HotStar Taq DNA polymerase was activated at 95 °C for 2 min, followed by 40 cycles at various temperatures/times (i.e., 94 °C for 15 s, 60 °C for 30 s, and 72 °C for 30 s). At the end of the amplification period, melting curve analysis was done to confirm the specificity of the amplification. Fold-changes of genes after treatment with different concentrations of formononetin were calculated by normalizing the Ct values to the GAPDH internal control. The sequences of the primer pairs in this experiment were as follows: human GAPDH, 5′-GGCATCTTGGGCTACT-3′ (forward), 5′-GCGAGTTTGGGAAAT-3′ (reverse); human MMP-9, 5′-GGAGCCAGGACATCTCTGAT-3′ (forward), 5′-TGGCATCTGGAAATTCG-3′ (reverse); human TIMP-2, 5′-GGAACCTTT-3′ (forward), 5′-GTCATCTGAAATTCG-3′ (reverse); mouse GAPDH, 5′-GGGGAGCTCTGACAT-3′ (forward), 5′-TTGATGCTTGGCAGAAT-3′ (reverse); human MDA-MB-231-luc breast cancer cells were resuspended in PBS and subsequently injected into the lateral tail vein in a volume of 0.1 ml. Mice were randomly divided into 3 groups: (1) vehicle (1 % DMSO in PBS) group (control), (2) low-dose formononetin group (10 mg/kg), (3) high-dose formononetin group (20 mg/kg). There were 10 mice per group. Formononetin was administrated intraperitoneally (i.p.) every 2 days. Bioluminescent imaging was performed by anesthetizing and injecting mice retro-orbitally with 1.5 mg of D-luciferin (15 mg/ml in PBS), and images were acquired at 5 min after injection using the Xenogen IVIS 200 system before analysis using the Living Image software (Xenogen).

Statistical analysis
All data were presented as the means ± standard deviation (S.D.) of 3 independent experiments done in triplicate. Statistical analysis was performed by Student’s t-test or one-way analysis of variance (ANOVA). Survival curves were analyzed according to the Kaplan-Meier method, and p-value was calculated for the comparisons between curves by the log-rank test. In all cases, p < 0.05 was considered statistically significant.

Results

Cytotoxicity of formononetin to MDA-MB-231-luc cells
Chemical structure of formononetin was shown in ▶ Fig. 1a. To verify the effect of formononetin on cell viability, cells were treated with formononetin at indicated concentrations for 24 h and tested by MTT assay. Compared with untreated control cells, the viabilities of MDA-MB-231-luc and 4T1 cells were not significantly affected by formononetin at a concentration between 0 and 80 μmol/l (▶ Fig. 1b). Furthermore, the effect of formononetin (0–80 μmol/l) occurred in the absence of evident cytotoxicity, as verified by cell morphology (▶ Fig. 1c). Thus, noncytotoxic concentration of formononetin was used in the subsequent experiments.

Formononetin inhibited breast cancer cell migration and invasion
To investigate the inhibitory effect of formononetin on migration of MDA-MB-231-luc and 4T1 cells, the wound-healing assay was performed. After incubation with formononetin for 12 h, the number of cells migrated to the denuded zone was analyzed. The results demonstrated that formononetin suppressed migration of breast cancer cells in a dose-dependent manner. Treatment with formononetin (2.5, 5, 10, 20, and 40 μmol/l) was inhibited by 10.6, 15.9, 38.7, 57.8, and 75.9 % of MDA-MB-231 cell migration, and by 13.0, 18.8, 35.4, 64.8, and 75.1 % of 4T1 cell migration, respectively (▶ Fig. 2a, b). To further examine the effect of formononetin on the invasive ability of breast cancer cells, a BD chamber coated with matrigel was used. Our data showed that the number of cells invading the lower chamber was significantly reduced by formononetin and a 79.2 % or 78.5 % reduction in cell invasion of MDA-MB-231 or 4T1 breast cancer cells was observed for treatment with 40 mmol/l formononetin (▶ Fig. 2c, d). These results suggest that formononetin is effective in preventing breast cancer cell migration and invasion.
Effects of formononetin on MMPs expression
Since the expression of MMPs is crucial to extracellular matrix (ECM) degradation, which is required for cell invasion, it is vital to determine whether MMPs are involved in the inhibition of migration and invasion by formononetin. The effects of formononetin on MMPs were investigated by Western blot and real time-PCR. As shown in Fig. 3a, b, formononetin treatment led to a dose-dependent reduction in MMP-9 and MMP-2 expression. The results also demonstrated that formononetin elevated the expressions of TIMP-1 and TIMP-2, which were known to be...
negative regulators of MMPs. These results suggest that formononetin can affect expressions of proteins and genes involved in proteolytic activation.

Effects of formononetin on the PI3K/AKT signaling pathway

It has been reported that MMP-2 and MMP-9 expressions are critically mediated by the PI3K/Akt pathway. To investigate the effect of formononetin on the AKT in MDA-MB-231-luc cells, immunofluorescence analyses were performed. The results demonstrated that formononetin inhibited the expression of the p-AKT in a concentration-dependent manner (Fig. 3c). To confirm the data generated by immunofluorescence staining, we performed Western blot analysis of phosphorylated and total PI3K, AKT, JNK, and ERK. Our results showed that formononetin could inhibit the expressions of p-PI3K and p-AKT in a dose-dependent manner, but the levels of phospho-ERK and phospho-JNK were not affected by formononetin (Fig. 3d). Taken together, all of our data suggest that formononetin suppresses the PI3K/AKT signaling pathway in breast cancer cells.

Effects of formononetin on lung metastasis in vivo

The mouse tail vein injection tumor metastasis model was used to evaluate the inhibitory effect of formononetin on MDA-MB-231-luc metastasis. After tail vein injection, vehicle control or formononetin at 10 mg/kg/day or 20 mg/kg/day was administered. Treatment continued for 35 days after MDA-MB-231-luc cells injection, and the treatment effect of formononetin was examined by bioluminescence imaging. As shown in Fig. 4a, formononetin dramatically reduced the development of lung metastases in a dose- and time-dependent manner. Photon flux in the lungs of mice treated at this dose was dramatically reduced (p < 0.05 or p < 0.01) compared with control (Fig. 4b). Furthermore, survival analysis showed that mice receiving a
treatment of formononetin had a statistically significantly longer survival than the mice with vehicle control treatment (Fig. 4c).

Discussion

Recently, considerable emphases have been given to identify new anticancer agents from natural sources. Formononetin, a naturally existing isoflavone, has been reported to have a wide range of pharmacologic effects, such as inhibition of cell proliferation and cell cycle progression, and induction of apoptosis in various cancer cell lines [12, 16–20, 25]. Metastatic spread of breast cancer is responsible for 90% of human cancer-related deaths and thus remains one of the important negative predictors of breast cancer prognosis [26, 27]. However, whether formononetin exerts an inhibitory effect on breast cancer metastasis has not been elucidated previously.

In the present study, we have demonstrated that formononetin strikingly inhibited the migratory and invasive abilities of breast cancer cells at noncytotoxic concentrations in vitro (Fig. 2). These results indicated that formononetin inhibited breast cancer cell migration and invasion, and the effect was not attributed to its cytotoxicity. In addition, we also found that formononetin inhibited breast cancer cell metastasis and prolonged animal survival time in vivo (Fig. 4). These results indicated that formononetin might play a beneficial role in breast cancer metastasis.

A vital step in cancer metastasis processes is the proteolytic degradation of the ECM by proteolytic enzymes, such as MMPs [28]. MMPs are a family of zinc-containing endopeptidases, of which MMP-2 and MMP-9 are highly expressed in aggressive breast tumors and are associated with poor clinical outcome [5, 6, 29, 30]. The inhibition of MMP-2 and MMP-9 expressions is a critical step in the prevention of cancer metastasis [27, 31–33]. TIMPs, the regulators of MMPs, are also involved in tumor progression, invasion, metastasis and angiogenesis [34]. Furthermore, increased expressions of TIMP-1 or TIMP-2 have been shown to suppress cell invasion [35–37]. In our study, it was found that the inhibition of MMP-2 and MMP-9 expressions and the increase in TIMP-1 and TIMP-2 expressions were attributable to the anti-invasive effect of formononetin (Fig. 3a, b).

Many have reported that MMP-2 and MMP-9 expression were mediated by the PI3K/Akt pathway [38–43]. PI3K is a lipid kinase that controls multiple cellular processes through AKT activation. Furthermore, AKT activation can lead to cancer invasion and metastasis by stimulating the secretion of MMPs [39, 44, 45]. The presence of phosphatidylinositol 3-kinase γ (PI3Kγ) overexpression is characteristic in the metastatic breast cancer cells, when compared with the normal breast epithelial cell line or nonmetastatic breast cancer cells. In addition, the overexpression of recombinant PI3Kγ was reported to be able to increase the metastatic ability of nonmetastatic breast cancer cells [46]. Moreover, PI3K inhibitor could lead to a reduction in MMP-2 activation, cell migration and cell invasion [47]. Some traditional Chinese medicine monomers and compounds have been reported to have inhibitory effects on the migration and invasion of cancer cells via reducing the expression of MMPs via the PI3K/Akt signaling pathway [48–56]. It was also reported that formononetin inhibited the breast cancer cell proliferation by decreasing the

Fig. 4 Preventive effects of formononetin on mouse tail vein injection breast tumor metastasis model. a Bioluminescence imaging of lung-metastatic breast cancer cells at 5 weeks post MDA-MB-231 breast cancer cells implantation (2 × 10⁶ cells by tail vein injection), showing that the preventive effects of formononetin on the lung-metastasis of MDA-MB-231 breast cancer (n = 10/group). p/sec/cm²/sr = photons/second/cm²/steradian. b Quantitative analysis of metastatic cells in lung bioluminescence analysis. The means ± SD are presented; *p < 0.05, **p < 0.01. c Kaplan-Meier analysis of mouse survival after xenograft. p-Values were calculated using 2-sided log-rank test.
expression of cyclin D1 via the IGF1/Pi3K/Akt pathways [17]. In our study, we have demonstrated that treatment with for-
mononetin significantly reduced Pi3K and Akt phosphorylation (∗ Fig. 3c, d), which indicated an inhibitory effect to the Pi3K/
Akt signaling pathway by formononetin. Therefore, we suggest that formononetin inhibits the invasion of breast cancer cells by
reducing the expression of MMP-2 and MMP-9 through Pi3K/Akt signaling pathways.

In conclusion, the present study has demonstrated that for-
mononetin decreased the invasive ability of MDA-MB-231 and
4T1 breast cancer cells, including migration and invasion, by
inhibiting MMP-2 and MMP-9 expressions. This effect might be
attributed to the inactivation of Pi3K/Akt pathway. These results
provide new insights into molecular mechanisms involved in
the anti-invasive activity of formononetin in breast cancer cells.
This finding strongly suggests formononetin to be a potentially
useful anti-invasive agent for breast cancers.

Conflict of Interest

The authors declare that they have no conflicts of interest in the
authorship or publication of this contribution.

References
1 Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of
2 Mahmoodhosseyn AA, Liu W, Rong-Rong Z. Triple-negative breast cancer:
3 Amos KD, Adams B, Anders CK. Triple-negative breast cancer: an update
4 Baser O, Wei W, Xie L, Henk HJ, Teitelbaum A. Retrospective study of
patients with metastatic triple-negative breast cancer: survival,
health care utilization, and cost. Comm Oncol 2012; 9: 8–14
5 Talvensaari-Mattila A, Paapko P, Hoklaya M, Blanco-Sequras G,
Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreac-
6 Petilainen JM, Ropponen KM, Kataja VV, Kellokossa JK, Eskelin MJ,
Kosma VM. Expression of matrix metalloproteinase (MMP-2) and
MMP-9 in breast cancer with a special reference to activator protein-2,
HER2, and prognosis. Clinical cancer research 2004; 2004: 7621–7628
7 Li HC, Cao DC, Liu Y, Hou YF, Wu J, Lu JS, Di GH, Liu G, Li FM, Ou ZL, Jie C, Shen ZZ, Shao XM. Prognostic value of matrix metalloproteinases
(MMP-2 and MMP-9) in patients with lymph node-negative breast
8 Egeland M, Verz B. New functions for the matrix metalloproteinases
9 Li W, Sun YN, Yan XT, Yung SY, Kim S, Lee YM, Koh YS, Kim YH. fla-
vonoids from Astragalus membranaceus and their inhibitory effects
on LPS-stimulated pro-inflammatory cytokine production in bone
10 Ma Z, Ji W, Fu Q, Ma S. Formononetin Inhibited the Inflammation of
LPS-Induced Acute Lung Injury in Mice Associated with Induction of
Pparg Gamma Expression. Inflammation 2013; 36: 1560–1566
Isolation of anti-inflammatory fractions and compounds from the root
Chem 2012; 54: 175–187
13 Ji ZN, Zhao WY, Liao CY, Choi RC, Lo CK, Dong T, Sism KKW. In vitro
estrogetic activity of Formononetin by two bioassay systems. Gynecol-
ological endocrinology: the official journal of the International Society
of Gynecol Endocrinol 2006; 22: 578–584
14 Park J, Kim SH, Cho D, Kim TS. Formononetin, a phyto-oestrogen, and
its metabolites up-regulate interleukin-4 production in activated T
cells via increased AP-1 DNA binding activity. Immunology 2005; 116: 71–81
15 Sun T, Wang J, Huang LH, Cao YX. Antihypertensive effect of Formonon-
etin through regulating the expressions of eNOS, S-HT2A/1B receptors
and alpha1-adrenoceptors in spontaneously rat arteries. Eur J Phar-
macol 2013; 699: 241–249
16 Ye W, Hou R, Chen J, Mo L, Zhang J, Huang Y, Mo Z. Formononetin-
induced apoptosis of human prostate cancer cells through ERK1/2
mitogen-activated protein kinase inactivation. Horm Metab Res 2012;
44: 263–267
17 Chen J, Zeng J, Xin M, Huang W, Chen X. Formononetin induces cell
cycle arrest of human breast cancer cells via IGF1/Pi3K/Akt pathways
18 Chen J, Sun L. Formononetin-induced apoptosis by activation of Ras/
p38 mitogen-activated protein kinase in estrogen receptor-positive
19 Manosso TA, Ramalho RM, Luo X, Ramalhette C, Rodrigues CM, Ferreira
MJ. Isoflavones as apoptosis inducers in human hepatoma Huh-7 cells.
Phytother Res 2011; 25: 1819–1824
20 Auyeung KK, Law PC, Ko JK. Novel anti-angiogenic effects of Formonon-
etin in human colon cancer cells and tumor xenograft. Oncol Rep
2012; 28: 2188–2194
21 Krenn L, Paper DH. Inhibition of angiogenesis and inflammation by an
extract of red clover (Trifolium pratense L.). Phytomedicine 2009; 16:
1083–1088
22 Chaves KF, Garimella SV, Lipkowitz S. Triple negative breast cancer cell
lines: one tool in the search for better treatment of triple negative
23 Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast
24 Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study
of late stage breast cancer. BMC Cancer 2008; 8: 228
25 Tyagi AM, Srivastava K, Singh AK, Kumar A, Changkila B, Pandey R, Lahiri
S, Nagar GK, Yadav DK, Muraya R, Trivedi R, Singh D. Formononetin
reverses established osteopenia in adult ovariectomized rats. Meno-
pause (New York, NY) 2012; 19: 856–863
Proteomics 2012; 9: 311–320
27 Alix-Panabieres C, Muller V, Pantel K. Current status in human breast
28 Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metas-
29 Jezierska A, Motyli T. Matrix metalloproteinase-2 involvement in breast
30 Vázquez EJ, Gonzalez LO, Corte MD, Rodriguez JC, Vazquez J, Lameles ML,
Junquera S, Merino AM, Garcia-Muniz JL. Study of matrix metallopro-
tenases and their inhibitors in breast cancer. Brit J Cancer 2007; 96:
903–911
31 Hua J, Muschel RJ. Inhibition of matrix metalloproteinase 9 expres-
sion by a ribozyme blocks metastasis in a rat sarcoma model system.
Cancer research 1996; 56: 5279–5284
32 Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL, Nirmala C,
Selective suppression of matrix metalloproteinase-9 in human glio-
blastoma cells by antisense gene transfer impairs glioblastoma
cell invasion. Cancer research 2000; 60: 6851–6855
33 Iurlaro M, Laverro G, Vacca A, Corinno G, Ribatti D, Minisetti M, Ria
R, Bruno M, Selvaggi L. Angiogenesis extent and expression of matrix
metalloproteinase-2 and -9 correlate with upgrading and myeome-
trial invasion in endometrial carcinoma. Eur J Clin Invest 1999; 29:
793–801
34 Cruz-Manzo W, Khokha R. The role of tissue inhibitors of metallo-
45: 291–338
35 Khokha R. Suppression of the tumorigenic and metastatic abilities of
murine B16-F10 melanoma cells in vivo by the overexpression of the
tissue inhibitor of the metalloproteinases-1. J Nat Cancer Inst 1994;
86: 299–304
36 Khokha R, Zimmer MJ, Graham CH, Lala PK, Waterhouse P. Suppres-
sion of invasion by inducible expression of tissue inhibitor of metal-
loproteinase-1 (TIMP-1) in B16-F10 melanoma cells. J Nat Cancer Inst
1992; 84: 1017–1022
37 Valente P, Fassina G, Melchiori A, Messiello L, Cilli M, Vacca A, Onisio
M, Santi L, Steitel-Stevenson WG, Albini A. TIMP-2 over-expression
reduces invasion and angiogenesis and protects B16F10 melanoma

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

41 Qiu Q, Yang M, Tsang BK, Gruslin A. EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways. Reproduction 2004; 128: 353–363

