Semin Respir Crit Care Med 2014; 35(03): 352-361
DOI: 10.1055/s-0034-1376866
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

FDG PET for Gauging of Sarcoid Disease Activity

Human Adams
1   Department of Pulmonology, Center Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, The Netherlands
2   Department of Nuclear Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
,
Ruth G. Keijsers
2   Department of Nuclear Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
,
Ingrid H. E. Korenromp
1   Department of Pulmonology, Center Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, The Netherlands
,
Jan C. Grutters
1   Department of Pulmonology, Center Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, The Netherlands
3   Division of Heart and Lung, UMC Utrecht, Utrecht, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
09 July 2014 (online)

Abstract

Fluorodeoxyglucose (FDG), labeled with a positron emitting fluorine-18 (18F), is a synthesized glucose analogue and is well known for its application in a wide variety of clinical conditions such as cancer. Visualizing metabolic activity of inflammation is another application of FDG in positron emission tomography (PET). Here, active granulomas appear to have a high affinity for FDG, which is reflected in a high sensitivity of FDG PET imaging. This has led to novel applications of FDG PET in sarcoidosis diagnosis and management. Although chest radiography and high-resolution computed tomography are still the cornerstones of diagnosing pulmonary involvement, FDG PET appears to be superior to both techniques in imaging active sites of disease. FDG PET also correlates well with serum biomarkers such as soluble interleukin-2 receptor in symptomatic patients, and even visualizes active lesions in the context of normal serum biomarkers. Moreover, FDG PET activity in lung parenchyma correlates with decrease of lung function values over time. Also in cardiac involvement in sarcoidosis, FDG PET is a promising technique complementary to magnetic resonance imaging, especially in guiding treatment. New developments, such as applications for quantitative organ-specific measurement, are proceeding and will probably enhance the clinical implementation of FDG PET in sarcoidosis.

 
  • References

  • 1 Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007; 357 (21) 2153-2165
  • 2 Schneider S, Batrice A, Rischpler C, Eiber M, Ibrahim T, Nekolla SG. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J 2014; 35 (5) 312
  • 3 Appenzeller P, Mader C, Huellner MW , et al. PET/CT versus body coil PET/MRI: how low can you go?. Insights Imaging 2013; 4 (4) 481-490
  • 4 Boellaard R, O'Doherty MJ, Weber WA , et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010; 37 (1) 181-200
  • 5 Conti M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011; 38 (6) 1147-1157
  • 6 Mayo JR. CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thorac Imaging 2009; 24 (4) 252-259
  • 7 Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994; 35 (10) 1647-1649
  • 8 Fu Y, Maianu L, Melbert BR, Garvey WT. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 2004; 32 (1) 182-190
  • 9 Satomi T, Ogawa M, Mori I , et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med 2013; 54 (6) 999-1004
  • 10 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50 (Suppl. 01) 11S-20S
  • 11 Keir G, Wells AU. Assessing pulmonary disease and response to therapy: which test?. Semin Respir Crit Care Med 2010; 31 (4) 409-418
  • 12 Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years' observation. BMJ 1961; 2 (5261) 1165-1172
  • 13 Miller BH, Putman CE. The chest radiograph and sarcoidosis. Reevaluation of the chest radiograph in assessing activity of sarcoidosis: a preliminary communication. Sarcoidosis 1985; 2 (2) 85-90
  • 14 Prasse A, Katic C, Germann M, Buchwald A, Zissel G, Müller-Quernheim J. Phenotyping sarcoidosis from a pulmonary perspective. Am J Respir Crit Care Med 2008; 177 (3) 330-336
  • 15 Mostard RL, Vöö S, van Kroonenburgh MJ , et al. Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis. Respir Med 2011; 105 (12) 1917-1924
  • 16 Sundaram B, Chughtai AR, Kazerooni EA. Multidetector high-resolution computed tomography of the lungs: protocols and applications. J Thorac Imaging 2010; 25 (2) 125-141
  • 17 Nishino M, Washko GR, Hatabu H. Volumetric expiratory HRCT of the lung: clinical applications. Radiol Clin North Am 2010; 48 (1) 177-183
  • 18 Biederer J, Reuter M. HRCT of the lung: nodular pattern: anatomy and differential diagnosis [in German]. Radiologe 2010; 50 (6) 553-566
  • 19 Fritz J, Fishman EK, Maksimovic O, Horger M. Typical and atypical HRCT findings of thoracic sarcoidosis [in German]. Rofo 2010; 182 (10) 835-839
  • 20 Nakatsu M, Hatabu H, Morikawa K , et al. Large coalescent parenchymal nodules in pulmonary sarcoidosis: “sarcoid galaxy” sign. AJR Am J Roentgenol 2002; 178 (6) 1389-1393
  • 21 Akbar JJ, Meyer CA, Shipley RT, Vagal AS. Cardiopulmonary imaging in sarcoidosis. Clin Chest Med 2008; 29 (3) 429-443 , viii
  • 22 Marchiori E, Zanetti G, Escuissato DL , et al. Reversed halo sign: high-resolution CT scan findings in 79 patients. Chest 2012; 141 (5) 1260-1266
  • 23 Herráez Ortega I, Alonso Orcajo N, López González L. The “sarcoid cluster sign”. A new sign in high resolution chest CT [in Spanish]. Radiologia 2009; 51 (5) 495-499
  • 24 Gafà G, Sverzellati N, Bonati E , et al. Follow-up in pulmonary sarcoidosis: comparison between HRCT and pulmonary function tests. Radiol Med (Torino) 2012; 117 (6) 968-978
  • 25 Ors F, Gumus S, Aydogan M, Sari S, Verim S, Deniz O. HRCT findings of pulmonary sarcoidosis; relation to pulmonary function tests. Multidiscip Respir Med 2013; 8 (1) 8
  • 26 Nunes H, Brillet PY, Valeyre D, Brauner MW, Wells AU. Imaging in sarcoidosis. Semin Respir Crit Care Med 2007; 28 (1) 102-120
  • 27 Ziora D, Kornelia K, Jastrzebski D, Labus L, Zieleznik K, Kozielski J. High resolution computed tomography in 2-year follow-up of Stage I sarcoidosis. Adv Exp Med Biol 2013; 788: 369-374
  • 28 Mostard RL, Verschakelen JA, van Kroonenburgh MJ , et al. Severity of pulmonary involvement and (18)F-FDG PET activity in sarcoidosis. Respir Med 2013; 107 (3) 439-447
  • 29 Groves AM, Win T, Screaton NJ , et al. Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18F-FDG PET/CT. J Nucl Med 2009; 50 (4) 538-545
  • 30 Nunes H, Uzunhan Y, Gille T, Lamberto C, Valeyre D, Brillet PY. Imaging of sarcoidosis of the airways and lung parenchyma and correlation with lung function. Eur Respir J 2012; 40 (3) 750-765
  • 31 Keijsers RG, van den Heuvel DA, Grutters JC. Imaging the inflammatory activity of sarcoidosis. Eur Respir J 2013; 41 (3) 743-751
  • 32 Kurdziel KA. The panda sign. Radiology 2000; 215 (3) 884-885
  • 33 Oksüz MO, Werner MK, Aschoff P, Pfannenberg C. 18F-FDG PET/CT for the diagnosis of sarcoidosis in a patient with bilateral inflammatory involvement of the parotid and lacrimal glands (panda sign) and bilateral hilar and mediastinal lymphadenopathy (lambda sign). Eur J Nucl Med Mol Imaging 2011; 38 (3) 603
  • 34 Keijsers RG, Grutters JC, Thomeer M , et al. Imaging the inflammatory activity of sarcoidosis: sensitivity and inter observer agreement of (67)Ga imaging and (18)F-FDG PET. Q J Nucl Med Mol Imaging 2011; 55 (1) 66-71
  • 35 Klech H, Kohn H, Kummer F, Mostbeck A. Assessment of activity in Sarcoidosis. Sensitivity and specificity of 67Gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest 1982; 82 (6) 732-738
  • 36 Klech H, Köhn H, Pohl W, Kummer F, Mostbeck A. [Diagnosis in sarcoidosis. Sensitivity and specificity of 67-gallium scintigraphy, serum angiotensin converting enzyme levels, thoracic radiography and blood lymphocyte subpopulations [in German]. Wien Med Wochenschr 1983; 133 (17) 425-432
  • 37 Köhn H, Klech H, Mostbeck A, Kummer F. 67Ga scanning for assessment of disease activity and therapy decisions in pulmonary sarcoidosis in comparison to chest radiography, serum ACE and blood T-lymphocytes. Eur J Nucl Med 1982; 7 (9) 413-416
  • 38 Line BR, Hunninghake GW, Keogh BA, Jones AE, Johnston GS, Crystal RG. Gallium-67 scanning to stage the alveolitis of sarcoidosis: correlation with clinical studies, pulmonary function studies, and bronchoalveolar lavage. Am Rev Respir Dis 1981; 123 (4 Pt 1) 440-446
  • 39 Kaira K, Ishizuka T, Yanagitani N, Sunaga N, Hisada T, Mori M. Value of FDG positron emission tomography in monitoring the effects of therapy in progressive pulmonary sarcoidosis. Clin Nucl Med 2007; 32 (2) 114-116
  • 40 Nishiyama Y, Yamamoto Y, Fukunaga K , et al. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med 2006; 47 (10) 1571-1576
  • 41 Teirstein AS, Machac J, Almeida O, Lu P, Padilla ML, Iannuzzi MC. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest 2007; 132 (6) 1949-1953
  • 42 Kiyohara S, Nagamachi S, Wakamatsu H , et al. Usefulness of metabolic volume and total lesion glycolysis for predicting therapeutic response in cancer therapy by 18F-FDG PET/CT [in Japanese]. Kaku Igaku 2010; 47 (4) 453-461
  • 43 Kim TM, Paeng JC, Chun IK , et al. Total lesion glycolysis in positron emission tomography is a better predictor of outcome than the International Prognostic Index for patients with diffuse large B cell lymphoma. Cancer 2013; 119 (6) 1195-1202
  • 44 Yoon HJ, Paeng JC, Kwak C , et al. Prognostic implication of extrarenal metabolic tumor burden in advanced renal cell carcinoma treated with targeted therapy after nephrectomy. Ann Nucl Med 2013; 27 (8) 748-755
  • 45 Liao S, Lan X, Cao G, Yuan H, Zhang Y. Prognostic predictive value of total lesion glycolysis from 18F-FDG PET/CT in post-surgical patients with epithelial ovarian cancer. Clin Nucl Med 2013; 38 (9) 715-720
  • 46 Ziegenhagen MW, Rothe ME, Schlaak M, Müller-Quernheim J. Bronchoalveolar and serological parameters reflecting the severity of sarcoidosis. Eur Respir J 2003; 21 (3) 407-413
  • 47 Costabel U, Bonella F, Ohshimo S, Guzman J. Diagnostic modalities in sarcoidosis: BAL, EBUS, and PET. Semin Respir Crit Care Med 2010; 31 (4) 404-408
  • 48 Keijsers RG, Grutters JC, van Velzen-Blad H, van den Bosch JM, Oyen WJ, Verzijlbergen FJ. (18)F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis. Eur J Nucl Med Mol Imaging 2010; 37 (6) 1181-1188
  • 49 Heron M, Slieker WA, Zanen P , et al. Evaluation of CD103 as a cellular marker for the diagnosis of pulmonary sarcoidosis. Clin Immunol 2008; 126 (3) 338-344
  • 50 Keijsers RG, Verzijlbergen FJ, Oyen WJ , et al. 18F-FDG PET, genotype-corrected ACE and sIL-2R in newly diagnosed sarcoidosis. Eur J Nucl Med Mol Imaging 2009; 36 (7) 1131-1137
  • 51 Vorselaars AD, Verwoerd A, van Moorsel CH, Keijsers RG, Rijkers GT, Grutters JC. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. Eur Respir J 2014; 43 (2) 602-609
  • 52 Sobic-Saranovic D, Grozdic I, Videnovic-Ivanov J , et al. The utility of 18F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med 2012; 53 (10) 1543-1549
  • 53 Bergin CJ, Bell DY, Coblentz CL , et al. Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests. Radiology 1989; 171 (3) 619-624
  • 54 Drent M, De Vries J, Lenters M , et al. Sarcoidosis: assessment of disease severity using HRCT. Eur Radiol 2003; 13 (11) 2462-2471
  • 55 Abehsera M, Valeyre D, Grenier P, Jaillet H, Battesti JP, Brauner MW. Sarcoidosis with pulmonary fibrosis: CT patterns and correlation with pulmonary function. AJR Am J Roentgenol 2000; 174 (6) 1751-1757
  • 56 Akira M, Kozuka T, Inoue Y, Sakatani M. Long-term follow-up CT scan evaluation in patients with pulmonary sarcoidosis. Chest 2005; 127 (1) 185-191
  • 57 Keijsers RG, Verzijlbergen EJ, van den Bosch JM , et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2011; 28 (2) 123-129
  • 58 Doughan AR, Williams BR. Cardiac sarcoidosis. Heart 2006; 92 (2) 282-288
  • 59 Nunes H, Freynet O, Naggara N , et al. Cardiac sarcoidosis. Semin Respir Crit Care Med 2010; 31 (4) 428-441
  • 60 Watanabe E, Kimura F, Nakajima T , et al. Late gadolinium enhancement in cardiac sarcoidosis: characteristic magnetic resonance findings and relationship with left ventricular function. J Thorac Imaging 2013; 28 (1) 60-66
  • 61 Ohira H, Tsujino I, Ishimaru S , et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008; 35 (5) 933-941
  • 62 Ishimaru S, Tsujino I, Takei T , et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005; 26 (15) 1538-1543
  • 63 Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009; 16 (5) 801-810
  • 64 Youssef G, Leung E, Mylonas I , et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 2012; 53 (2) 241-248
  • 65 Mehta D, Lubitz SA, Frankel Z , et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 2008; 133 (6) 1426-1435
  • 66 Skali H, Schulman AR, Dorbala S. 18F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep 2013; 15 (4) 352
  • 67 Blankstein R, Naya M, Osborne M , et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoid. J Am Coll Cardiol 2012; 59: E1310
  • 68 Betensky BP, Tschabrunn CM, Zado ES , et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm 2012; 9 (6) 884-891
  • 69 Sekhri V, Sanal S, Delorenzo LJ, Aronow WS, Maguire GP. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci 2011; 7 (4) 546-554
  • 70 Takeda N, Yokoyama I, Hiroi Y , et al. Positron emission tomography predicted recovery of complete A-V nodal dysfunction in a patient with cardiac sarcoidosis. Circulation 2002; 105 (9) 1144-1145
  • 71 Soussan M, Brillet PY, Nunes H , et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013; 20 (1) 120-127
  • 72 Györik S, Ceriani L, Menafoglio A, Gallino A, Wyttenbach R. 18F-FDG PET scan as follow-up tool for sarcoidosis with symptomatic cardiac conduction disturbances requiring a pacemaker. Thorax 2007; 62 (6) 560
  • 73 Smedema JP, White L, Klopper AJ. FDG-PET and MIBI-Tc SPECT as follow-up tools in a patient with cardiac sarcoidosis requiring a pacemaker. Cardiovasc J Afr 2008; 19 (6) 309-310
  • 74 Mc Ardle BA, Leung E, Ohira H , et al. The role of F(18)-fluorodeoxyglucose positron emission tomography in guiding diagnosis and management in patients with known or suspected cardiac sarcoidosis. J Nucl Cardiol 2013; 20 (2) 297-306
  • 75 Dubey N, Miletich RS, Wasay M, Mechtler LL, Bakshi R. Role of fluorodeoxyglucose positron emission tomography in the diagnosis of neurosarcoidosis. J Neurol Sci 2002; 205 (1) 77-81
  • 76 Ng D, Jacobs M, Mantil J. Combined C-11 methionine and F-18 FDG PET imaging in a case of neurosarcoidosis. Clin Nucl Med 2006; 31 (7) 373-375
  • 77 Aide N, Benayoun M, Kerrou K, Khalil A, Cadranel J, Talbot JN. Impact of [18F]-fluorodeoxyglucose ([18F]-FDG) imaging in sarcoidosis: unsuspected neurosarcoidosis discovered by [18F]-FDG PET and early metabolic response to corticosteroid therapy. Br J Radiol 2007; 80 (951) e67-e71
  • 78 Mañá J, Gámez C. Molecular imaging in sarcoidosis. Curr Opin Pulm Med 2011; 17 (5) 325-331
  • 79 Sakushima K, Yabe I, Shiga T , et al. FDG-PET SUV can distinguish between spinal sarcoidosis and myelopathy with canal stenosis. J Neurol 2011; 258 (2) 227-230
  • 80 Sobic-Saranovic DP, Grozdic IT, Videnovic-Ivanov J , et al. Responsiveness of FDG PET/CT to treatment of patients with active chronic sarcoidosis. Clin Nucl Med 2013; 38 (7) 516-521
  • 81 Ambrosini V, Zompatori M, Fasano L , et al. (18)F-FDG PET/CT for the assessment of disease extension and activity in patients with sarcoidosis: results of a preliminary prospective study. Clin Nucl Med 2013; 38 (4) e171-e177
  • 82 Milman N, Graudal N, Loft A, Mortensen J, Larsen J, Baslund B. Effect of the TNF-α inhibitor adalimumab in patients with recalcitrant sarcoidosis: a prospective observational study using FDG-PET. Clin Respir J 2012; 6 (4) 238-247
  • 83 Keijsers RG, Verzijlbergen JF, van Diepen DM, van den Bosch JM, Grutters JC. 18F-FDG PET in sarcoidosis: an observational study in 12 patients treated with infliximab. Sarcoidosis Vasc Diffuse Lung Dis 2008; 25 (2) 143-149