J Knee Surg 2015; 28(02): 165-174
DOI: 10.1055/s-0034-1373739
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Management of Intraoperative Complications in Arthroscopic Primary Anterior Cruciate Ligament Reconstruction

Charalambos P. Charalambous
1   Department of Trauma and Orthopaedics, Victoria Hospital, Blackpool, United Kingdom
,
Farhan Alvi
2   Department of Trauma and Orthopaedics, North West Deanery, Manchester, United Kingdom
,
Paul M. Sutton
3   Department of Trauma and Orthopaedics, Northern General Hospital, Sheffield, United Kingdom
› Author Affiliations
Further Information

Publication History

07 October 2013

11 February 2014

Publication Date:
21 April 2014 (online)

Abstract

Arthroscopic anterior cruciate ligament reconstruction is a commonly performed procedure which is technically demanding and involves multiple surgical steps with the potential for a wide range of intraoperative complications. In this article, we review these potential complications and give algorithms for dealing with them based on our experience and published evidence. We discuss the use of both bone-patellar tendon-bone and hamstring grafts and examine complications associated with suspensory button and interference screw fixation.

 
  • References

  • 1 Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med 2012; 40 (10) 2230-2235
  • 2 Maletis GB, Granan LP, Inacio MC, Funahashi TT, Engebretsen L. Comparison of community-based ACL reconstruction registries in the U.S. and Norway. J Bone Joint Surg Am 2011; 93 (Suppl. 03) 31-36
  • 3 Lind M, Menhert F, Pedersen AB. The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 2009; 17 (2) 117-124
  • 4 Chechik O, Amar E, Khashan M, Lador R, Eyal G, Gold A. An international survey on anterior cruciate ligament reconstruction practices. Int Orthop 2013; 37 (2) 201-206
  • 5 Ali MS, Kumar A, Adnaan Ali S, Hislop T. Anterior cruciate ligament reconstruction using hamstring tendon graft without detachment of the tibial insertion. Arch Orthop Trauma Surg 2006; 126 (9) 644-648
  • 6 Izquierdo Jr R, Cadet ER, Bauer R, Stanwood W, Levine WN, Ahmad CS. A survey of sports medicine specialists investigating the preferred management of contaminated anterior cruciate ligament grafts. Arthroscopy 2005; 21 (11) 1348-1353
  • 7 Cooper DE, Arnoczky SP, Warren RF. Contaminated patellar tendon grafts: incidence of positive cultures and efficacy of an antibiotic solution soak—an in vitro study. Arthroscopy 1991; 7 (3) 272-274
  • 8 Goebel ME, Drez Jr D, Heck SB, Stoma MK. Contaminated rabbit patellar tendon grafts. In vivo analysis of disinfecting methods. Am J Sports Med 1994; 22 (3) 387-391
  • 9 Molina ME, Nonweiller DE, Evans JA, Delee JC. Contaminated anterior cruciate ligament grafts: the efficacy of 3 sterilization agents. Arthroscopy 2000; 16 (4) 373-378
  • 10 Plante MJ, Li X, Scully G, Brown MA, Busconi BD, DeAngelis NA. Evaluation of sterilization methods following contamination of hamstring autograft during anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21 (3) 696-701
  • 11 Pasque CB, Geib TM. Intraoperative anterior cruciate ligament graft contamination. Arthroscopy 2007; 23 (3) 329-331
  • 12 Hantes ME, Basdekis GK, Varitimidis SE, Giotikas D, Petinaki E, Malizos KN. Autograft contamination during preparation for anterior cruciate ligament reconstruction. J Bone Joint Surg Am 2008; 90 (4) 760-764
  • 13 Nakayama H, Yagi M, Yoshiya S, Takesue Y. Micro-organism colonization and intraoperative contamination in patients undergoing arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 2012; 28 (5) 667-671
  • 14 Lee GH, McCulloch P, Cole BJ, Bush-Joseph CA, Bach Jr BR. The incidence of acute patellar tendon harvest complications for anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (2) 162-166
  • 15 Papageorgiou CD, Kostopoulos VK, Moebius UG, Petropoulou KA, Georgoulis AD, Soucacos PN. Patellar fractures associated with medial-third bone-patellar tendon-bone autograft ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2001; 9 (3) 151-154
  • 16 Salvi AE, Metelli GP, Musella G. Intraoperative fracture of patellar bone plug during anterior cruciate ligament reconstruction with bone-patellar tendon-bone: clinical case. Knee Surg Sports Traumatol Arthrosc 2007; 15 (1) 58-60
  • 17 Kurzweil PR. Formula to calculate the length of the tibial tunnel with endoscopic ACL reconstruction to avoid graft-tunnel mismatch. Arthroscopy 1999; 15 (1) 115-117
  • 18 Kenna B, Simon TM, Jackson DW, Kurzweil PR. Endoscopic ACL reconstruction: a technical note on tunnel length for interference fixation. Arthroscopy 1993; 9 (2) 228-230
  • 19 Shaffer B, Gow W, Tibone JE. Graft-tunnel mismatch in endoscopic anterior cruciate ligament reconstruction: a new technique of intraarticular measurement and modified graft harvesting. Arthroscopy 1993; 9 (6) 633-646
  • 20 Yasin MN, Charalambous CP, Mills SP, Phaltankar PM. Accessory bands of the hamstring tendons: a clinical anatomical study. Clin Anat 2010; 23 (7) 862-865
  • 21 Charalambous CP, Alvi F, Phaltankar P, Gagey O. Hamstring tendon harvesting—effect of harvester on tendon characteristics and soft tissue disruption; cadaver study. Knee 2009; 16 (3) 183-186
  • 22 Charalambous CP, Kwaees TA. Anatomical considerations in hamstring tendon harvesting for anterior cruciate ligament reconstruction. Muscles Ligaments Tendons J 2012; 2 (4) 253-257
  • 23 Hamido F, Misfer AK, Al Harran H , et al. The use of the LARS artificial ligament to augment a short or undersized ACL hamstrings tendon graft. Knee 2011; 18 (6) 373-378
  • 24 Jepsen CF, Lundberg-Jensen AK, Faunoe P. Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? A clinical, prospective, randomized, double-blind study. Arthroscopy 2007; 23 (12) 1326-1333
  • 25 Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Arthroscopy 2003; 19 (3) 297-304
  • 26 Iriuchishima T, Shirakura K, Fu FH. Graft impingement in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21 (3) 664-670
  • 27 Park JK, Song EK, Seon JK. Comparison of intraoperative stability in ACL reconstruction based on femoral tunnel positions. Orthopedics 2010; 33 (10, Suppl): 94-97
  • 28 Bedi A, Altchek DW. The “footprint” anterior cruciate ligament technique: an anatomic approach to anterior cruciate ligament reconstruction. Arthroscopy 2009; 25 (10) 1128-1138
  • 29 Lubowitz JH, Akhavan S, Waterman BR, Aalami-Harandi A, Konicek J. Technique for creating the anterior cruciate ligament femoral socket: optimizing femoral footprint anatomic restoration using outside-in drilling. Arthroscopy 2013; 29 (3) 522-528
  • 30 Petersen W, Forkel P, Achtnich A, Metzlaff S, Zantop T. Anatomic reconstruction of the anterior cruciate ligament in single bundle technique [in German]. Oper Orthop Traumatol 2013; 25 (2) 185-204
  • 31 Shino K, Suzuki T, Iwahashi T , et al. The resident's ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2010; 18 (9) 1164-1168
  • 32 Hutchinson MR, Ash SA. Resident's ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy 2003; 19 (9) 931-935
  • 33 Gelber PE, Erquicia J, Abat F , et al. Effectiveness of a footprint guide to establish an anatomic femoral tunnel in anterior cruciate ligament reconstruction: computed tomography evaluation in a cadaveric model. Arthroscopy 2011; 27 (6) 817-824
  • 34 Gavriilidis I, Motsis EK, Pakos EE, Georgoulis AD, Mitsionis G, Xenakis TA. Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: a cadaveric study. Knee 2008; 15 (5) 364-367
  • 35 Chang CB, Choi JY, Koh IJ, Lee KJ, Lee KH, Kim TK. Comparisons of femoral tunnel position and length in anterior cruciate ligament reconstruction: modified transtibial versus anteromedial portal techniques. Arthroscopy 2011; 27 (10) 1389-1394
  • 36 Golish SR, Baumfeld JA, Schoderbek RJ, Miller MD. The effect of femoral tunnel starting position on tunnel length in anterior cruciate ligament reconstruction: a cadaveric study. Arthroscopy 2007; 23 (11) 1187-1192
  • 37 Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H. The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc 2006; 14 (11) 1086-1093
  • 38 Hamilton SC, Jackson II ER, Karas SG. Anterior cruciate ligament femoral tunnel drilling through anteromedial portal: axial plane drill angle affects tunnel length. Arthroscopy 2011; 27 (4) 522-525
  • 39 Rue JP, Busam ML, Detterline AJ, Bach Jr BR. Posterior wall blowout in anterior cruciate ligament reconstruction: avoidance, recognition, and salvage. J Knee Surg 2008; 21 (3) 235-240
  • 40 Dave LY, Nyland J, Caborn DN. Knee flexion angle is more important than guidewire type in preventing posterior femoral cortex blowout: a cadaveric study. Arthroscopy 2012; 28 (10) 1381-1387
  • 41 Hammond KE, Dierckman BD, Potini VC, Xerogeanes JW, Labib SA, Hutton WC. Lateral femoral cortical breach during anterior cruciate ligament reconstruction: a biomechanical analysis. Arthroscopy 2012; 28 (3) 365-371
  • 42 Avadhani A, Rao PS, Rao SK. Effect of tibial tunnel position on arthroscopically assisted anterior cruciate ligament reconstruction using bone-patellar tendon-bone grafts: a prospective study. Singapore Med J 2010; 51 (5) 413-417
  • 43 Pinczewski LA, Salmon LJ, Jackson WF, von Bormann RB, Haslam PG, Tashiro S. Radiological landmarks for placement of the tunnels in single-bundle reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 2008; 90 (2) 172-179
  • 44 Kongcharoensombat W, Ochi M, Abouheif M , et al. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study. Arthroscopy 2011; 27 (10) 1395-1399
  • 45 Ferretti M, Doca D, Ingham SM, Cohen M, Fu FH. Bony and soft tissue landmarks of the ACL tibial insertion site: an anatomical study. Knee Surg Sports Traumatol Arthrosc 2012; 20 (1) 62-68
  • 46 Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH. A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 2009; 17 (3) 213-219
  • 47 Tállay A, Lim MH, Bartlett J. Anatomical study of the human anterior cruciate ligament stump's tibial insertion footprint. Knee Surg Sports Traumatol Arthrosc 2008; 16 (8) 741-746
  • 48 Barrett GR, Papendick L, Miller C. Endobutton button endoscopic fixation technique in anterior cruciate ligament reconstruction. Arthroscopy 1995; 11 (3) 340-343
  • 49 Petre BM, Smith SD, Jansson KS , et al. Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 2013; 41 (2) 416-422
  • 50 Mae T, Kuroda S, Matsumoto N , et al. Migration of EndoButton after anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 2011; 27 (11) 1528-1535
  • 51 Yanmiş I, Tunay S, Oğuz E, Yildiz C, Ozkan H, Kirdemir V. Dropping of an EndoButton into the knee joint 2 years after anterior cruciate ligament repair using proximal fixation methods. Arthroscopy 2004; 20 (6) 641-643
  • 52 Karaoglu S, Halici M, Baktir A. An unidentified pitfall of Endobutton use: case report. Knee Surg Sports Traumatol Arthrosc 2002; 10 (4) 247-249
  • 53 Muneta T, Yagishita K, Kurihara Y, Sekiya I. Intra-articular detachment of the Endobutton more than 18 months after anterior cruciate ligament reconstruction. Arthroscopy 1999; 15 (7) 775-778
  • 54 Smith CA, Tennent TD, Pearson SE, Beach WR. Fracture of Bilok interference screws on insertion during anterior cruciate ligament reconstruction. Arthroscopy 2003; 19 (9) E115-E117
  • 55 Konan S, Haddad FS. A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 2009; 16 (1) 6-13
  • 56 Macdonald P, Arneja S. Biodegradable screw presents as a loose intra-articular body after anterior cruciate ligament reconstruction. Arthroscopy 2003; 19 (6) E22-E24
  • 57 Werner A, Wild A, Ilg A, Krauspe R. Secondary intra-articular dislocation of a broken bioabsorbable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2002; 10 (1) 30-32
  • 58 Hall MP, Hergan DM, Sherman OH. Early fracture of a bioabsorbable tibial interference screw after ACL reconstruction with subsequent chondral injury. Orthopedics 2009; 32 (3) 208
  • 59 Resinger C, Vécsei V, Heinz T, Nau T. The removal of a dislocated femoral interference screw through a posteromedial portal. Arthroscopy 2005; 21 (11) 1398
  • 60 Lee JJ, Otarodifard K, Jun BJ, McGarry MH, Hatch III GF, Lee TQ. Is supplementary fixation necessary in anterior cruciate ligament reconstructions?. Am J Sports Med 2011; 39 (2) 360-365