Planta Med 2014; 80(14): 1154-1160
DOI: 10.1055/s-0034-1368549
Perspectives
Georg Thieme Verlag KG Stuttgart · New York

Useful Methods for Targeted Plant Selection in the Discovery of Potential New Drug Candidates

Sianne L. Schwikkard
1   Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
2   School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
,
Dulcie A. Mulholland
1   Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
2   School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
› Author Affiliations
Further Information

Publication History

received 24 September 2013
revised 27 April 2014

accepted 04 May 2014

Publication Date:
12 June 2014 (online)

Abstract

The efficient and effective selection of appropriate plants for investigative purposes in a drug discovery program is of crucial importance for a successful outcome. A variety of approaches have been used by researchers with varying levels of success. A variety of different approaches to plant selection are discussed, including the ethnomedicinal approach, some ecological approaches, and the use of combinatorial and computational methodologies.

 
  • References

  • 1 Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod 1997; 60: 52-60
  • 2 Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003; 66: 1022-1037
  • 3 Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007; 70: 461-477
  • 4 Newman DJ, Cragg GM. Natural products as sources of new drugs over 30 years from 1981 to 2010. J Nat Prod 2012; 75: 311-335
  • 5 Munos B. Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 2009; 8: 959-968
  • 6 Firn RD. Bioprospecting – why is it so unrewarding?. Biodivers Conserv 2003; 12: 207-216
  • 7 Montaser R, Luesch H. Marine natural products: a new wave of drugs?. Future Med Chem 2011; 3: 1475-1489
  • 8 Ramesha BT, Gertsch J, Ravikanth G, Priti V, Ganeshaiah KN, Shaanker RU. Biodiversity and chemodiversity: future perspectives in bioprospecting. Curr Drug Targets 2011; 12: 1515-1530
  • 9 Phillipson JD. Phytochemistry and medicinal plants. Phytochemistry 2001; 56: 237-243
  • 10 Heinrich M, Bremner P. Ethnobotany and ethnopharmacy – their role for anti-cancer drug development. Curr Drug Targets 2006; 7: 239-245
  • 11 Lewis WH. Pharmaceutical discoveries based on ethnomedicinal plants: 1985 to 2000 and beyond. Econ Bot 2003; 57: 126-134
  • 12 Baker JT, Borris RP, Carte B, Cordell GA, Soejarto DD, Cragg GM, Gupta MP, Iwu MW, Madulid DR, Tyer VE. Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod 1995; 58: 1325-1357
  • 13 Heinrich M, Edwards S, Moerman DE, Leonti M. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J Ethnopharmacol 2009; 124: 1-17
  • 14 DeNatale A, Pezzatti GB, Pollio A. Extending the temporal context of ethnobotanical databases: the case study of the Campania region (Southern Italy). J Ethnobiol Ethnomed 2009; 5: 7
  • 15 Giorgetti M, Negri G, Rodrigues E. Brazilian plants with possible action on the central nervous system – a study of historical sources from the 16th to 19th century. J Ethnopharmacol 2007; 109: 338-347
  • 16 Perry EK, Pickering AT, Wang WW, Houghton P, Perry NSL. Medicinal plants and Alzheimerʼs disease: Integrating ethnobotanical and contemporary scientific evidence. J Altern Complement Med 1998; 4: 419-428
  • 17 Karunamoorthi K, Husen E. Knowledge and self-reported practice of the local inhabitants on traditional insect repellent plants in Western Hararghe zone, Ethiopia. J Ethnopharmacol 2012; 141: 212-219
  • 18 Lehman AD, Dunkel FV, Klein RA, Ouattara S, Diallo D, Gamby KT, NʼDiaye M. Insect management products from Malian traditional medicine – establishing systematic criteria for their identification. J Ethnopharmacol 2007; 110: 235-249
  • 19 Hutchings A, Scott AH, Lewis G, Cunningham A. Zulu medicinal plants: an inventory. Pietermaritzburg: University of Kwazulu-Natal Press; 1996
  • 20 Douwes E, Crouch NR, Edwards TJ, Mulholland DA. Regression analysis of southern African ethnomedicinal plants: informing the targeted selection of bioprospecting and pharmacological screening subjects. J Ethnopharmacol 2008; 119: 356-364
  • 21 Bennett BC, Husby CE. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analysis. J Ethnopharmacol 2008; 116: 422-430
  • 22 Weckerle CS, Cabras S, Castellanos ME, Leonti M. Quantitative methods in ethnobotany and ethnopharmacology: considering the overall flora – hypothesis testing for over- and underused plant families with the Bayesian approach. J Ethnopharmacol 2011; 137: 837-843
  • 23 Weckerle CS, Cabras S, Castellanos ME, Leonti M. An imprecise probability approach for the detection of over- and underused taxonomic groups with the Campania (Itay) and the Sierra Popoluca (Mexico) medicinal flora. J Ethnopharmacol 2012; 142: 259-264
  • 24 Khafagi IK, Dewedar A. The efficiency of random versus ethno-directed research in the evaluation of Sinai medicinal plants for bioactive compounds. J Ethnopharmacol 2000; 71: 365-376
  • 25 Gyllenhaal C, Kadushin MR, Southavong B, Sydara K, Bouamanivong S, Xaiveu M, Xuan LT, Hiep NT, Hung NV, Loc PK, Dac LX, Bich TQ, Cuong N, Ly HM, Zhang HJ, Franzblau SG, Xie H, Riley MC, Elkington BG, Nguyen HT, Waller DP, Ma CY, Tamez P, Tan GT, Pezzuto JM, Soejarto DD. Ethnobotanical approach versus random approach in the search for new bioactive compounds: support of a hypothesis. Pharm Biol 2012; 50: 30-41
  • 26 Bierer DE, Fort DM, Mendez CD, Luo J, Imbach PA, Dubenko LG, Jolad SD, Gerber RE, Litvak J, Lu Q, Zhang P, Reed MJ, Waldeck N, Bruening RC, Noamesi BK, Hector RF, Carlson TJ, King SR. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepsis sanguinolenta, synthesis and its in vitro and in vivo activities. J Med Chem 1998; 41: 894-901
  • 27 Luo J, Fort DM, Carlson TJ, Noamesi BK, nii-Amon-Kotei D, King SR, Tsai J, Quan J, Hobensack C, Lapresca P, Waldeck N, Mendez CD, Jolad SD, Bierer DE, Reaven GM. Cryptolepsis sanguinolenta: an ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent. Diabet Med 1998; 15: 367-374
  • 28 Haddad PS, Musallam L, Martineau LC, Harris C, Lavoie L, Arnason JT, Forster B, Bennett S, Johns T, Cuerrier A, Come EC, Come RC, Diamond J, Etapp L, Etapp C, George J, Swallow CH, Swalow JH, Jolly M, Kawapit A, Mamianskum E, Petawabano J, Petawabano S, Petawabano L, Weistche A, Badawi A. Comprehensive evidence-based assessment and prioritization of potential antidiabetic medicinal plants: a case study from Canadian Eastern James Bay Cree traditional medicine. Evid Based Complement Alternat Med 2012; 2012: 893426
  • 29 Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 2004; 92: 177-191
  • 30 Saslis-Lagoudakis CH, Williamson EM, Savolainen V, Hawkins JA. Cross-cultural comparison of three medicinal floras and implications for bioprospecting strategies. J Ethnopharmacol 2011; 135: 476-487
  • 31 Tan AC, Konczak I, Sze DM, Ramzan I. Towards the discovery of novel phytochemicals for disease prevention from native Australian plants: an ethnobotanical approach. Asia Pac J Clin Nutr 2010; 19: 330-334
  • 32 Bernard P, Scior T, Didier B, Hibert M, Berthon JY. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Phytochem 2001; 58: 865-874
  • 33 Stenholm Å, Göransson U, Bohlin L. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L. Phytochem Anal 2012; 24: 176-183
  • 34 Wang MC, Lai YC, Chang CL. High throughput screening and antioxidant assay of dibenzo[a,c]cyclooctadiene lignans in modified ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography-mass spectroscopy and free radical-scavenging method. J Sep Sci 2008; 31: 1322-1332
  • 35 Sewram V, Raynor MW, Mulholland DA, Raidoo DM. The uterotonic activity of compounds isolated from the supercritical fluid extract of Ekerbergia capensis . J Pharm Biomed Anal 2000; 24: 133-145
  • 36 Mulholland DA, Sewram V, Raynor MW, Thornell K, Raidoo DM. Coupling SFE to uterotonic bioassay: an online investigation of the utertonic activity of compounds from Grewia occidentalis (Tiliaceae). S Afr J Bot 2002; 68: 68-71
  • 37 Sewram V, Raynor MW, Mulholland DA, Raidoo DM. Supercritical fluid extraction and analysis of compounds from Clivia miniata for utertonic activity. Planta Med 2001; 67: 451-455
  • 38 de Almeida CFCBR, de Amorim ELC, de Albuquerque UP. Insights into search for new drugs from traditional knowledge: an ethnobotanical and chemical-ecological perspective. Pharmaceutical Biology 2011; 49: 864-873
  • 39 de Almeida CFCBR, de Lima-e-Silva TC, de Amorim ELC, Maia MBS, de Albuquerque UP. Life strategy and chemical composition as predictors of the selection of medicinal plants from the Caatinga. J Arid Environ 2005; 62: 127-142
  • 40 Coley PD, Heller MV, Aizprua R, Araúz B, Flores N, Correa M, Gupta M, Solis PN, Ortega-Barría E, Romero LI, Gómez B, Ramos M, Cubilla-Rios L, Capson TL, Kursar TA. Using ecological criteria to design plant collection strategies for drug discovery. Front Ecol Environ 2003; 1: 421-428
  • 41 Albuquerque UP, Ramos MA, Melo JG. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J Ethnopharmacol 2012; 140: 197-201
  • 42 Obbo CJD, Makanga B, Mulholland DA, Coombes PH, Brun R. Antiprotozoal activity of Khaya anthotheca (Welv.) C.D.C. a plant used by chimpanzees for self medication. J Ethnopharmacol 2013; 147: 220-223
  • 43 Zhu F, Ma XH, Qin C, Tao L, Liuy X, Shi Z, Zhang CL, Tan CY, Chen YZ, Jiang YY. Drug discovery prospect from untapped species: indicators from approved natural product drugs. PLoS One 2012; 7: e39782 DOI: 10.1371/journal.pone.0039782.
  • 44 Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA. The use of phylogeny to interpret cross-cultural paterns in plant use and guide medicinal plant discovery: an example from Pterocarpus . PLoS One 2011; 6: e22275
  • 45 Rochfort S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod 2005; 68: 1813-1820
  • 46 Wyzgoski FJ, Paudel L, Rinaldi PL, Reese RN, Ozgen M, Tulio AZ, Miller AR, Scheerens JC, Hardy JK. Modelling relationships among active components in black raspberry (Rubus occidentalis) fruit extracts using high-resolution 1-H NMR spectroscopy and multivariate statistical analysis. J Agric Food Chem 2010; 58: 3407-3414
  • 47 Inui T, Wang Y, Pro SM, Franzblau SG, Pauli GF. Unbiased evaluation of bioactive secondary metabolites in complex matrices. Fitoterapia 2012; 83: 1218-1225
  • 48 Iino K, Sugimoto M, Soga T, Tomita M. Profiling of the charged metabolites of traditional herbal medicines using capillary electrophoresis time-of-flight mass spectroscopy. Metabolomics 2012; 8: 99-108
  • 49 Heinrich M. Ethnopharmacy and natural product research – multidisciplinary opportunities for research in the metabolomic age. Phytochem Lett 2008; 1: 1-5
  • 50 Albrecht CF, Stander MA, Grobbelaar MC, Colling J, Kossmann J, Hills PN, Makunga NP. LC-MS-based metabolomics assists with quality assessment and traceability of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). S Afr J Bot 2012; 82: 33-45
  • 51 López-Vallejo F, Caulfield T, Martínez-Mayorga K, Giulianotti MA, Nefzi A, Houghten RA, Medina-Franco JL. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Com Chem High T Scr 2011; 14: 475-487
  • 52 Scior T, Bernard P, Medina-Franco JL, Maggiora GM. Large compound databases for structure-activity relationships studies in drug discovery. Mini Rev Med Chem 2007; 7: 851-860
  • 53 Do QT, Renimel I, Andre P, Lugnier C, Muller CD, Bernard P. Reverse pharmacognosy: application of Selnergy, a new tool for lead discovery. The example of ε-viniferin. Curr Drug Discov Technol 2005; 2: 1-7
  • 54 Blondeau S, Do QT, Scior T, Bernard P, Morin-Allory L. Reverse pharmacognosy: another way to harness the generosity of nature. Curr Pharm Des 2010; 16: 1682-1696
  • 55 Do QT, Lamy C, Renimel I, Sauvan N, André P, Himbert F, Morin-Allory L, Bernard P. Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. Planta Med 2007; 73: 1235-1240
  • 56 Bernard P, Scior T, Do QT. Modulating testosterone pathway: a new strategy to tackle male skin aging. Clin Interv Aging 2012; 7: 351-361