Dialyse aktuell 2013; 17(S 01): S6-S10
DOI: 10.1055/s-0034-1368101
Nephrologie
© Georg Thieme Verlag Stuttgart · New York

Eisen – Grundsätzliche Rolle im Körper und bei renaler Anämie

Iron – Basic role in the body and in renal anemia
Markus van der Giet
1   Medizinische Klinik für Nephrologie, Transplantationsmedizin, Hypertensiologie und internistische Intensivmedizin, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin (Direktor: Prof. Dr. Walter Zidek)
› Author Affiliations
Further Information

Publication History

Publication Date:
20 January 2014 (online)

Zusammenfassung

Eisen ist ein äußerst wichtiges Spurenelement, das für die Aufrechterhaltung zahlreicher Lebensvorgänge inklusive des Energie- und Atemhaushaltes unerlässlich ist. Eisen wird im Körper vor allem über die Darmresorption reguliert und in der Leber im Wesentlichen gespeichert. Eisen wird hocheffektiv über Makrophagen wiederverwertet. Vor einigen Jahren hat man das Hormon Hepcidin identifiziert, das zentral für die Steuerung der Eisenhomöostase relevant ist. Hepcidin wird aufgrund verschiedener Stimuli wie Inflammation bzw. Eisenüberladung hochreguliert, wohingegen eine Reduzierung bei Anämie, Eisenmangel oder auch Hypoxie besteht. Bei chronischer Niereninsuffizienz zeigen sich aufgrund der fehlenden renalen Elimination und auch der Inflammation erhöhte Hepcidinspiegel, die zur Dysregulation des Eisenhaushaltes und damit auch zur renalen Anämie beitragen. Ziel dieser Übersicht ist es, die Eisenhomöostase und die Regulation von Hepcidin darzustellen.

Summary

Iron is a highly relevant trace element which is essential for the proper function of many essential life processes, including energy und breathing control. Iron is resorbed in the intestine and is mainly stored in the liver. Iron is efficiently recycled in macrophages. Some years ago, hepcidin was identified as a central peptide hormone which regulates iron homeostasis. Hepcidin can be controlled by various stimuli. Inflammation and high iron load regulate hepcidin levels down, whereas anemia, iron deficiency or hypoxia decreases hepcidin levels. In chronic renal failure, there is a reduced excretion of hepcidin and also an increase in hepcidin levels by chronic inflammtion. As a consequence, there is a dysregulation of iron homeostasis and this also leads to renal anemia. The purpose of the current review is to give information of iron homeostasis and to discuss the relevant regulatory role of hepcidin.

 
  • Literatur

  • 1 Conrad ME, Umbreit JN. Iron absorption and transport-an update. Am J Hematol 2000; 64: 287-298
  • 2 Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001; 131 (2S-2): 568S-579S discussion 580S
  • 3 Forth W, Rummel W. Iron absorption. Physiol Rev 1973; 53: 724-792
  • 4 Su D, Asard H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J 2006; 273: 3722-3734
  • 5 West AR, Oates PS. Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 2008; 14: 4101-4110
  • 6 Anderson ER, Shah YM. Iron homeostasis in the liver. Compr Physiol 2013; 3: 315-330
  • 7 Anderson GJ, Frazer DM, McLaren GD. Iron absorption and metabolism. Curr Opin Gastroenterol 2009; 25: 129-135
  • 8 Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806-7810
  • 9 Collins JF, Wessling-Resnick M, Knutson MD. Hepcidin regulation of iron transport. J Nutr 2008; 138: 2284-2288
  • 10 Pigeon C, Ilyin G, Courselaud B et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 2001; 276: 7811-7819
  • 11 Latunde-Dada GO, McKie AT, Simpson RJ. Animal models with enhanced erythropoiesis and iron absorption. Biochim Biophys Acta 2006; 1762: 414-423
  • 12 Nicolas G, Chauvet C, Viatte L et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002; 110: 1037-1044
  • 13 Nemeth E, Tuttle MS, Powelson J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-2093
  • 14 Nemeth E, Ganz T. Hepcidin and iron-loading anemias. Haematologica 2006; 91: 727-732
  • 15 Agarwal N, Prchal JT. Anemia of chronic disease (anemia of inflammation). Acta Haematol 2009; 122: 103-108
  • 16 Tomosugi N, Kawabata H, Wakatabe R et al. Detection of serum hepcidin in renal failure and inflammation by using ProteinChip System. Blood 2006; 108: 1381-1387
  • 17 Tsuchiya K, Nitta K. Hepcidin is a potential regulator of iron status in chronic kidney disease. Ther Apher Dial 2013; 17: 1-8
  • 18 Ashby DR, Gale DP, Busbridge M et al. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease. Kidney Int 2009; 75: 976-981
  • 19 Dallalio G, Law E, Means Jr RT. Hepcidin inhibits in vitro erythroid colony formation at reduced erythropoietin concentrations. Blood 2006; 107: 2702-2704
  • 20 Roy CN, Mak HH, Akpan I et al. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood 2007; 109: 4038-4044
  • 21 Coyne DW, Kapoian T, Suki W et al. DRIVE Study Group. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study. J Am Soc Nephrol 2007; 18: 975-984
  • 22 Van Buren P, Velez RL, Vaziri ND, Zhou XJ. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol 2012; 44: 499-507
  • 23 Sasu BJ, Cooke KS, Arvedson TL et al. Antihepcidin antibody treatment modulates iron metabolism and is effective in a mouse model of inflammation-induced anemia. Blood 2010; 115: 3616-3624