Fortschr Neurol Psychiatr 2014; 82(8): 447-456
DOI: 10.1055/s-0034-1366571
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Die Glutamathypothese der Schizophrenie

The Glutamate Hypothesis of Schizophrenia
A. Hasan
,
B. Malchow
,
P. Falkai
,
A. Schmitt
Further Information

Publication History

21 December 2013

23 April 2014

Publication Date:
08 August 2014 (online)

Zusammenfassung

Über viele Jahre war die Dopaminhypothese das alleinige Erklärungsmodell für die Ätiologie der Schizophrenie. Seit der Beobachtung, dass Antagonisten am NMDA-Rezeptor (z. B. PCP) bei gesunden Probanden Symptome der Schizophrenie auslösen können, hat sich die Glutamathypothese der Schizophrenie etabliert. Neben den PCP-induzierten Modellpsychosen gibt es mittlerweile Befunde aus allen Bereichen der modernen Neurowissenschaft, die die Glutamathypothese der Schizophrenie belegen und erweitern. In dieser Übersichtsarbeit werden die aktuell verfügbaren Evidenzen für die Glutamathypothese diskutiert und in Bezug zueinander gesetzt. Basierend hierauf werden die Möglichkeiten der gezielten pharmakologischen Beeinflussung des glutamatergen Systems beschrieben und aktuelle Therapiestudien vorgestellt. Insgesamt lässt sich feststellen, dass die Glutamathypothese mittlerweile gut als ätiologisches Modell der Schizophrenie etabliert ist. Auch wenn die Entwicklung glutamaterger Antipsychotika noch an ihrem Beginn steht, besteht die Hoffnung auf neue Therapiealternativen in der Behandlung der Schizophrenie. Allerdings konnten jüngste Ergebnisse aus Zulassungsstudien das Potential kürzlich entwickelter glutamaterger Medikamente nicht aufzeigen.

Abstract

For many years, the dopamine hypothesis of schizophrenia has been the leading theory explaining the aetiology of schizophrenia. However, since the first observation showed that NMDA-receptor antagonists (e. g., PCP) can induce all kinds of schizophrenia symptoms in humans, the glutamate hypothesis of schizophrenia has been established as an additional explanation model. Apart from the PCP-induced psychoses, many other findings from all areas of modern neuroscience have confirmed and extended the glutamate hypothesis. This review discusses the available evidence for the glutamate hypothesis and puts the different findings into relation. Consecutively, the possibilities for a pharmacological modulation of the glutamate system and recent clinical trials are discussed. To sum up, one could note that the glutamate hypothesis of schizophrenia is now well-established. The development of glutamatergic antipsychotics is still in the early stages, but there is hope for a new generation of antipsychotics based on the glutamate hypothesis of schizophrenia. However, recent findings from registration trials could not provide positive findings for the recently developed glutamatergic drugs.

 
  • Literatur

  • 1 Hasan A, Wobrock T. Treatment-resistant schizophrenia – biological treatments. Fortschr Neurol Psychiatr 2013; 81: 464-471
  • 2 DGPPN. S3 Praxisleitlinien in Psychiatrie und Psychotherapie, Band Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde. (DGPPN) (Hrsg) 2006
  • 3 Snyder SH. The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 1976; 133: 197-202
  • 4 Howes OD, Kambeitz J, Kim E et al. The Nature of Dopamine Dysfunction in Schizophrenia and What This Means for Treatment: Meta-analysis of Imaging Studies. Arch Gen Psychiatry 2012; 69: 776-786
  • 5 Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophrenia bulletin 2009; 35: 549-562
  • 6 Howes OD, Montgomery AJ, Asselin MC et al. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry 2007; 51: s13-s18
  • 7 Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 1975; 188: 1217-1219
  • 8 Yatham LN, Liddle PF, Shiah IS et al. PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry 2002; 159: 768-774
  • 9 Martinot M, Bragulat V, Artiges E et al. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 2001; 158: 314-316
  • 10 Davis KL, Kahn RS, Ko G et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiat 1991; 148: 1474-1486
  • 11 Carlsson A. Antipsychotic drugs, neurotransmitters, and schizophrenia. Am J Psychiatry 1978; 135: 165-173
  • 12 Hasan A, Falkai P, Wobrock T et al. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. The world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 2012; 13: 318-378
  • 13 Traynelis SF, Wollmuth LP, McBain CJ et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews 2010; 62: 405-496
  • 14 Hashimoto K, Malchow B, Falkai P et al. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013; 263: 367-377
  • 15 Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments. Biomolecules & therapeutics 2012; 20: 1-18
  • 16 Javitt DC, Zukin SR, Heresco-Levy U et al. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophrenia bulletin 2012; 38: 958-966
  • 17 Luby ED, Cohen BD, Rosenbaum G et al. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 1959; 81: 363-369
  • 18 Itil T, Keskiner A, Kiremitci N et al. Effect of phencyclidine in chronic schizophrenics. Can Psychiatr Assoc J 1967; 12: 209-212
  • 19 Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006; 26: 365-384
  • 20 Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. International review of neurobiology 2007; 78: 69-108
  • 21 Martin D, Lodge D. Phencyclidine receptors and N-methyl-D-aspartate antagonism: electrophysiologic data correlates with known behaviours. Pharmacology, biochemistry, and behavior 1988; 31: 279-286
  • 22 Paz RD, Tardito S, Atzori M et al. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 2008; 18: 773-786
  • 23 Moghaddam B, Jackson ME. Glutamatergic animal models of schizophrenia. Annals of the New York Academy of Sciences 2003; 1003: 131-137
  • 24 Verma A, Moghaddam B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. The Journal of neuroscience: the official journal of the Society for Neuroscience 1996; 16: 373-379
  • 25 Holcomb HH, Lahti AC, Medoff DR et al. Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology 2001; 25: 165-172
  • 26 De Simoni S, Schwarz AJ, O’Daly OG et al. Test-retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage 2013; 64: 75-90
  • 27 Kim JS, Kornhuber HH, Holzmuller B et al. Reduction of cerebrospinal fluid glutamic acid in Huntington's chorea and in schizophrenic patients. Archiv fur Psychiatrie und Nervenkrankheiten 1980; 228: 7-10
  • 28 Kim JS, Kornhuber HH, Schmid-Burgk W et al. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience letters 1980; 20: 379-382
  • 29 Perry TL. Normal cerebrospinal fluid and brain glutamate levels in schizophrenia do not support the hypothesis of glutamatergic neuronal dysfunction. Neuroscience letters 1982; 28: 81-85
  • 30 Do KQ, Lauer CJ, Schreiber W et al. gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. Journal of neurochemistry 1995; 65: 2652-2662
  • 31 Tamminga CA, Lahti AC, Medoff DR et al. Evaluating glutamatergic transmission in schizophrenia. Annals of the New York Academy of Sciences 2003; 1003: 113-118
  • 32 Erhardt S, Blennow K, Nordin C et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neuroscience letters 2001; 313: 96-98
  • 33 Nilsson LK, Linderholm KR, Engberg G et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophrenia research 2005; 80: 315-322
  • 34 Schwarcz R, Rassoulpour A, Wu HQ et al. Increased cortical kynurenate content in schizophrenia. Biological psychiatry 2001; 50: 521-530
  • 35 Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophrenia bulletin 2010; 36: 211-218
  • 36 Lewis DA, Glantz LA, Pierri JN et al. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Annals of the New York Academy of Sciences 2003; 1003: 102-112
  • 37 Volk DW, Lewis DA. Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiology & behavior 2002; 77: 501-505
  • 38 Lewis DA. Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues Clin Neurosci 2009; 11: 269-280
  • 39 Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2004; 61: 649-657
  • 40 Tsai G, Passani LA, Slusher BS et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829-836
  • 41 Law AJ, Deakin JF. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 2001; 12: 2971-2974
  • 42 Gao XM, Sakai K, Roberts RC et al. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. The American journal of psychiatry 2000; 157: 1141-1149
  • 43 Yeganeh-Doost P, Gruber O, Falkai P et al. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics 2011; 66 (Suppl. 01) 71-77
  • 44 Schmitt A, Koschel J, Zink M et al. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia. European archives of psychiatry and clinical neuroscience 2010; 260: 101-111
  • 45 Wilmsdorff MV, Blaich C, Zink M et al. Gene expression of glutamate transporters SLC1A1, SLC1A3 and SLC1A6 in the cerebellar subregions of elderly schizophrenia patients and effects of antipsychotic treatment. The world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 2013; 14: 490-499
  • 46 Habl G, Schmitt A, Zink M et al. Decreased reelin expression in the left prefrontal cortex (BA9) in chronic schizophrenia patients. Neuropsychobiology 2012; 66: 57-62
  • 47 Bennett MR. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in neurobiology 2011; 95: 275-300
  • 48 Powell SB, Sejnowski TJ, Behrens MM. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 2012; 62: 1322-1331
  • 49 Ayalew M, Le-Niculescu H, Levey DF et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Molecular psychiatry 2012; 17: 887-905
  • 50 Mossner R, Schuhmacher A, Wagner M et al. DAOA/G72 predicts the progression of prodromal syndromes to first episode psychosis. European archives of psychiatry and clinical neuroscience 2010; 260: 209-215
  • 51 Kirov G, Pocklington AJ, Holmans P et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular psychiatry 2012; 17: 142-153
  • 52 Beneyto M, Abbott A, Hashimoto T et al. Lamina-specific alterations in cortical GABAA receptor subunit expression in schizophrenia. Cereb Cortex 2011; 21: 999-1011
  • 53 Krysal JH, Moghaddam B. Contributions of glutamate and GABA system to the neurobiology and treatment of schizophrenia. In: Weinberger D, Harrison PF, Hrsg. Shizophrenia. Chichester: Wiley-Blackwell; 2011: 433-461
  • 54 Woo TU, Whitehead RE, Melchitzky DS et al. A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci U S A 1998; 95: 5341-5346
  • 55 Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Molecular psychiatry 2012; 17: 1228-1238
  • 56 Hasan A, Wobrock T, Grefkes C et al. Deficient inhibitory cortical networks in antipsychotic-naive subjects at risk of developing first-episode psychosis and first-episode schizophrenia patients: a cross-sectional study. Biological psychiatry 2012; 72: 744-751
  • 57 Shin KS, Kim JS, Kim SN et al. Aberrant auditory processing in schizophrenia and in subjects at ultra-high-risk for psychosis. Schizophrenia bulletin 2012; 38: 1258-1267
  • 58 Brockhaus-Dumke A, Schultze-Lutter F, Mueller R et al. Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological psychiatry 2008; 64: 376-384
  • 59 Benes FM. Regulation of cell cycle and DNA repair in post-mitotic GABA neurons in psychotic disorders. Neuropharmacology 2011; 60: 1232-1242
  • 60 Wu Y, Blichowski M, Daskalakis ZJ et al. Evidence that clozapine directly interacts on the GABAB receptor. Neuroreport 2011; 22: 637-641
  • 61 Hashimoto T, Bazmi HH, Mirnics K et al. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. The American journal of psychiatry 2008; 165: 479-489
  • 62 Benes FM, Lim B, Matzilevich D et al. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A 2007; 104: 10164-10169
  • 63 Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6: 312-324
  • 64 Benes FM, McSparren J, Bird ED et al. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991; 48: 996-1001
  • 65 Akbarian S, Kim JJ, Potkin SG et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258-266
  • 66 Thaker GK. Neurophysiological endophenotypes across bipolar and schizophrenia psychosis. Schizophrenia bulletin 2008; 34: 760-773
  • 67 Simpson MD, Slater P, Deakin JF et al. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neuroscience letters 1989; 107: 211-215
  • 68 Radhu N, de Jesus DR, Ravindran LN et al. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2013; 124: 1309-1320
  • 69 Hasan A, Falkai P, Wobrock T. Transcranial brain stimulation in schizophrenia: Targeting cortical excitability, connectivity and plasticity. Curr Med Chem 2012; 20 (03) 405-413
  • 70 Lisman J. Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia?. Current opinion in neurobiology 2012; 22: 537-544
  • 71 Campanella S, Guerit JM. How clinical neurophysiology may contribute to the understanding of a psychiatric disease such as schizophrenia. Neurophysiologie clinique 2009; 39: 31-39
  • 72 Bunse T, Wobrock T, Strube W et al. Motor Cortical Excitability Assessed by Transcranial Magnetic Stimulation in Psychiatric Disorders: A Systematic Review. Brain Stimul 2013; 7: 158-169
  • 73 Butler PD, Chen Y, Ford JM et al. Perceptual measurement in schizophrenia: promising electrophysiology and neuroimaging paradigms from CNTRICS. Schizophrenia bulletin 2012; 38: 81-91
  • 74 Pilowsky LS, Bressan RA, Stone JM et al. First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Molecular psychiatry 2006; 11: 118-119
  • 75 Snyder J, Thompson RB, Wilman AH. Difference spectroscopy using PRESS asymmetry: application to glutamate, glutamine, and myo-inositol. NMR in biomedicine 2010; 23: 41-47
  • 76 Snyder J, Wilman A. Field strength dependence of PRESS timings for simultaneous detection of glutamate and glutamine from 1.5 to 7T. Journal of magnetic resonance 2010; 203: 66-72
  • 77 Di Costanzo A, Trojsi F, Tosetti M et al. High-field proton MRS of human brain. European journal of radiology 2003; 48: 146-153
  • 78 Poels EM, Kegeles LS, Kantrowitz JT et al. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Molecular psychiatry 2014; 19: 20-29
  • 79 Poels EM, Kegeles LS, Kantrowitz JT et al. Glutamatergic abnormalities in schizophrenia: A review of proton MRS findings. Schizophrenia research 2014; 152: 325-332
  • 80 Marsman A, van den Heuvel MP, Klomp DW et al. Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophrenia bulletin 2013; 39: 120-129
  • 81 Vita A, De Peri L, Deste G et al. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Translational psychiatry 2012; 2: e190
  • 82 Wright IC, Rabe-Hesketh S, Woodruff PW et al. Meta-analysis of regional brain volumes in schizophrenia. The American journal of psychiatry 2000; 157: 16-25
  • 83 Le Strat Y, Ramoz N, Gorwood P. The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene-environment interaction (GxE) in schizophrenia. Current molecular medicine 2009; 9: 506-518
  • 84 Bartzokis G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2002; 27: 672-683
  • 85 Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001; 156: 234-258
  • 86 Kumari V, Soni W, Mathew VM et al. Prepulse inhibition of the startle response in men with schizophrenia: effects of age of onset of illness, symptoms, and medication. Arch Gen Psychiatry 2000; 57: 609-614
  • 87 Heresco-Levy U, Bar G, Levin R et al. High glycine levels are associated with prepulse inhibition deficits in chronic schizophrenia patients. Schizophrenia research 2007; 91: 14-21
  • 88 Javitt DC, Lindsley RW. Effects of phencyclidine on prepulse inhibition of acoustic startle response in the macaque. Psychopharmacology 2001; 156: 165-168
  • 89 Linn GS, Javitt DC. Phencyclidine (PCP)-induced deficits of prepulse inhibition in monkeys. Neuroreport 2001; 12: 117-120
  • 90 Linn GS, Negi SS, Gerum SV et al. Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology 2003; 169: 234-239
  • 91 Geyer MA, Krebs-Thomson K, Braff DL et al. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 2001; 156: 117-154
  • 92 van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia bulletin 2010; 36: 246-270
  • 93 Oxley T, Fitzgerald PB, Brown TL et al. Repetitive transcranial magnetic stimulation reveals abnormal plastic response to premotor cortex stimulation in schizophrenia. Biological psychiatry 2004; 56: 628-633
  • 94 Fitzgerald PB, Brown TL, Marston NA et al. Reduced plastic brain responses in schizophrenia: a transcranial magnetic stimulation study. Schizophrenia research 2004; 71: 17-26
  • 95 Frantseva MV, Fitzgerald PB, Chen R et al. Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 2008; 18: 990-996
  • 96 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527 Pt 3 633-639
  • 97 Nitsche MA, Fricke K, Henschke U et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003; 553: 293-301
  • 98 Nitsche MA, Cohen LG, Wassermann EM et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul 2008; 1: 206-223
  • 99 Nitsche MA, Jaussi W, Liebetanz D et al. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2004; 29: 1573-1578
  • 100 Fritsch B, Reis J, Martinowich K et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66: 198-204
  • 101 Hasan A, Nitsche MA, Rein B et al. Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behavioural brain research 2011; 224: 15-22
  • 102 Hasan A, Nitsche MA, Herrmann M et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimulation 2012; 5 (04) 475-483
  • 103 Hasan A, Aborowa R, Nitsche MA et al. Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation. European archives of psychiatry and clinical neuroscience 2012; 262: 415-423
  • 104 Hasan A, Bergener T, Nitsche MA et al. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia. Frontiers in psychiatry 2013; 4: 121
  • 105 Hasan A, Misewitsch K, Nitsche MA et al. Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study. Brain Stimul 2013; 6: 821-829
  • 106 Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia?. The American journal of psychiatry 1996; 153: 321-330
  • 107 Hoe M, Nakagami E, Green MF et al. The causal relationships between neurocognition, social cognition and functional outcome over time in schizophrenia: a latent difference score approach. Psychological medicine 2012; 1-13 DOI: 10.1017/S0033291712000578.
  • 108 Papanastasiou E, Stone JM, Shergill S. When the drugs don’t work: the potential of glutamatergic antipsychotics in schizophrenia. The British journal of psychiatry: the journal of mental science 2013; 202: 91-93
  • 109 Heresco-Levy U, Ermilov M, Lichtenberg P et al. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biological psychiatry 2004; 55: 165-171
  • 110 Heresco-Levy U, Javitt DC. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophrenia research 2004; 66: 89-96
  • 111 Heresco-Levy U, Javitt DC, Ebstein R et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biological psychiatry 2005; 57: 577-585
  • 112 Tsai G, Yang P, Chung LC et al. D-serine added to antipsychotics for the treatment of schizophrenia. Biological psychiatry 1998; 44: 1081-1089
  • 113 Tsai GE, Yang P, Chang YC et al. D-alanine added to antipsychotics for the treatment of schizophrenia. Biological psychiatry 2006; 59: 230-234
  • 114 Tsai G, Lane HY, Yang P et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biological psychiatry 2004; 55: 452-456
  • 115 Lane HY, Chang YC, Liu YC et al. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 2005; 62: 1196-1204
  • 116 Farokhnia M, Azarkolah A, Adinehfar F et al. N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clinical neuropharmacology 2013; 36: 185-192
  • 117 Berk M, Copolov D, Dean O et al. N-acetyl cysteine as a glutathione precursor for schizophrenia – a double-blind, randomized, placebo-controlled trial. Biological psychiatry 2008; 64: 361-368
  • 118 Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Current pharmaceutical design 2010; 16: 522-537
  • 119 Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS drugs 2011; 25: 859-885
  • 120 Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia. The Cochrane database of systematic reviews 2006; DOI: 10.1002/14651858.CD003730.pub2. CD003730
  • 121 Hofmann C, Banken L, Hahn M et al. Evaluation of the effects of bitopertin (RG1678) on cardiac repolarization: a thorough corrected QT study in healthy male volunteers. Clinical therapeutics 2012; 34: 2061-2071
  • 122 Umbricht D, Lentz E, Santarelli L et al. A post-hoc analysis of the negative symptom factor score in a proof-of-concept study with the Gylcine Reuptake Inhibitor (GRI), Bitopertin, in schizophrenia. European Neuropsychopharmacology 2012; 22: S311
  • 123 Umbricht D, Martin-Facklam M, Youssef E et al. Glycine reuptake inhibitor RG1678: results of the proof-of-concept study for the treatment of negative symptoms in schizophrenia. European Neuropsychopharmacology 2011; 21: S517-S518
  • 124 Roche. Roche provides update on the first two of six phase III studies of bitopertin in schizophrenia. 2013 http://www.roche.com/media/media_releases/med-cor-2014-01-21.htm
  • 125 Stauffer VL, Millen BA, Andersen S et al. Pomaglumetad methionil: No significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophrenia research 2013; 150: 434-441
  • 126 Adams DH, Kinon BJ, Baygani S et al. A long-term, phase 2, multicenter, randomized, open-label, comparative safety study of pomaglumetad methionil (LY2140023 monohydrate) versus atypical antipsychotic standard of care in patients with schizophrenia. BMC psychiatry 2013; 13: 143
  • 127 Patil ST, Zhang L, Martenyi F et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nature medicine 2007; 13: 1102-1107
  • 128 Lilly E. Lilly Stops Phase III Development of Pomaglumetad Methionil For the Treatment of Schizophrenia Based on Efficacy Results. 2012 https://investor.lilly.com/releasedetail.cfm?ReleaseID=703018
  • 129 McKenna P, Mortimer AM. Current and future treatment modalities in schizophrenia: novel antipsychotic drugs and cognitive therapy. J Expert Rev Neurother 2014; 14: 67-73
  • 130 Lieberman JA, Papadakis K, Csernansky J et al. A randomized, placebo-controlled study of memantine as adjunctive treatment in patients with schizophrenia. Neuropsychopharmacology 2009; 34: 1322-1329
  • 131 de Lucena D, Fernandes BS, Berk M et al. Improvement of negative and positive symptoms in treatment-refractory schizophrenia: a double-blind, randomized, placebo-controlled trial with memantine as add-on therapy to clozapine. J Clin Psychiatry 2009; 70: 1416-1423
  • 132 Insel TR, Sahakian BJ. Drug research: a plan for mental illness. Nature 2012; 483: 269