A minimally invasive technique utilizing percutaneous and endoscopic rendezvous for successful treatment of a proximal bile leak following partial hepatectomy

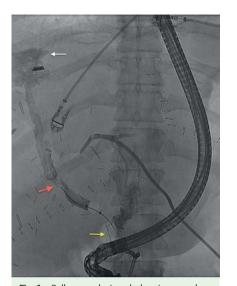


Fig. 1 Balloon occlusion cholangiogram obtained by passing a retrieval balloon through a fully covered self-expandable metallic biliary stent (yellow arrow) demonstrates a leak at the confluence of the left hepatic and common bile ducts (red arrow). Contrast is seen filling within a subhepatic collection (white arrow). Contrast in the left hepatic ducts is from concurrent percutaneous cholangiogram performed through an indwelling anchor drain.

A 43-year-old woman presented with a grade B [1] bile leak after right hepatectomy for metastatic colon cancer. She developed subhepatic bilomas which were managed with percutaneous drains. Endoscopic retrograde cholangiography (ERC) demonstrated a high-grade bile leak secondary to a large defect in the left hepatic duct, possibly due to complete dehiscence of the staple line of the right hepatic bile duct. Despite placement of a fully covered self-expandable metallic stent (SEMS), the bile leak persisted. Percutaneous transhepatic biliary drainage (PTBD) was attempted. The left hepatic duct was accessed in an antegrade fashion; however, the guidewire repeatedly entered the subhepatic space and could not be directed into the common bile duct. Simultaneous ERC and PTBD were performed. The leak (Fig. 1) and discontinuity between the left hepatic duct and common bile duct was redemonstrated at ERC. A guidewire was advanced in a retrograde manner to the area just distal to the

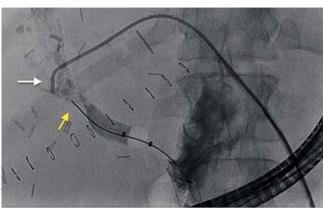
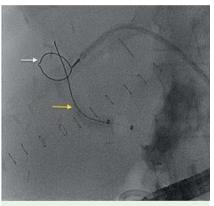



Fig. 2 A snare is passed antegrade through the left hepatic duct (white arrow) while a guidewire is passed retrograde through the common bile duct (yellow arrow).

Fig. 3 A snare is passed antegrade through the catheter within the left hepatic duct. The guidewire (yellow arrow) is grasped using a 15-mm snare (white arrow).

leak (Fig. 2). A 15-mm snare (Amplatz GooseNeck, Covidien, Plymouth, Minnesota, USA) was advanced in an antegrade manner across the left hepatic duct defect to capture the wire (Fig. 3) and pulled externally to secure biliary access. A percutaneous biliary drainage catheter was directed over the guidewire, through the SEMS, into the distal duodenum using endoscopic guidewire traction (> Fig. 4). The drain was customized with additional side holes which remained within the intrahepatic biliary tree but not in the region of the ductal defect (> Fig.5). At 6-month follow-up, the subhepatic collections had resolved on imaging.

Bile leaks occur in up to 10%–12% [1,2] of patients following hepatic surgery, and are a significant cause of postsurgical morbidity, prolonged hospital stay, and

Fig. 4 The 12-Fr biliary drainage catheter is passed antegrade through the fully covered self-expandable metallic stent previously placed across the papilla (yellow arrow) and directed endoscopically toward the distal duodenum (white arrow).

mortality [2]. Indications for resection of colorectal cancer liver metastasis have expanded in recent times, leading to larger and more complex resections [3]. Preoperative bevacizumab and surgical technique are independent predictors of bile leaks [2]. Establishing continuity between the biliary tree distal and proximal to the defect is crucial for successful treatment [4]. We describe successful establishment of biliary continuity using an ERC-PTBD rendezvous procedure (after failure of standard endoscopic techniques) to treat a large defect which obviated the need for repeat laparotomy.

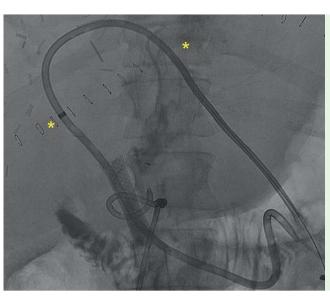


Fig. 5 The percutaneously placed12-Fr biliary drainage catheter is advanced through the common bile duct while ensuring that side holes are not present in the region of duct discontinuity (in between yellow asterisks).

Endoscopy_UCTN_Code_TTT_1AR_2AK

Competing interests: Payal Saxena has received consulting fees from Boston Scientific and research support from Cook Medical.

Mouen A. Khashab is a consultant for Boston Scientific and Olympus America and has received research support from Cook Medical.

Vikesh K. Singh is a consultant for Abbvie, Santarus, D-Pharm, and Boston Scientific. All other authors have no relevant conflicts of interest to disclose.

Payal Saxena¹, Adam Jeffers², Sally E. Mitchell², Timothy M. Pawlik³, Joanna K. Law¹, Vivek Kumbhari¹, Mouen A. Khashab¹, Vikesh K. Singh¹

- ¹ Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- ² Division of Interventional Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- ³ Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA

References

- 1 Koch M, Garden OJ, Padbury R et al. Bile leakage after hepatobiliary and pancreatic surgery: a definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011; 149: 680 688
- 2 Guillaud A, Pery C, Campillo B et al. Incidence and predictive factors of clinically relevant bile leakage in the modern era of liver resections. HPB (Oxford) 2013; 15: 224–229
- 3 Mayo SC, Pulitano C, Marques H et al. Surgical management of patients with synchronous colorectal liver metastasis: a multicenter international analysis. Am Coll Surg 2013; 216: 707 716; discussion 716 708
- 4 Fiocca F, Salvatori FM, Fanelli F et al. Complete transection of the main bile duct: minimally invasive treatment with an endoscopic-radiologic rendezvous. Gastrointest Endosc 2011; 74: 1393 1398

Bibliography

DOI http://dx.doi.org/ 10.1055/s-0034-1365376 Endoscopy 2014; 46: E212–E213 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

Corresponding author

Vikesh K. Singh, MD, MSc

Johns Hopkins Hospital
Division of Gastroenterology
1830 E. Monument Street, Room 428
Baltimore
MD 21205
USA
Fax: +1-410-614-7631
vsingh1@jhmi.edu