A 63-year-old female patient underwent endoscopic ultrasonography (EUS) for a gastric subepithelial lesion previously identified during upper endoscopy. A linear echoendoscope (Olympus UCT140AL5; Olympus, Tokyo, Japan) was used and no subepithelial lesion was found. However, a systematic evaluation revealed a 2-cm mass in the left atrium (Fig. 1). A transesophageal echocardiogram (TEE) confirmed the presence of a sessile mass, which was adherent to the upper third of the interatrial septum in the left atrium, with a heterogeneous appearance and a slight multilobulated contour (area 3.9 cm², dimensions 2.4×1.94cm) (Fig. 2).

The patient underwent complete surgical resection of the tumor and the histopathological analysis revealed a cardiac myxoma (Fig. 3). Fibrotic nodules containing iron and calcium (Gamma–Gandy bodies) were identified within the tumor. Gamma–Gandy bodies have been described in atrial myxomas, but are considered a rare finding [1–4]. These nodules are more commonly seen in the spleen in conditions such as hemochromatosis, sickle cell anemia, and portal hypertension. As Gamma–Gandy bodies have been described in myxomas, but not in other cardiac tumors, their identification by ultrasound would be a noninvasive method of confirming the diagnosis of myxoma. Gamma–Gandy bodies can be identified on an ultrasound as bright echoes, sometimes with an acoustic shadow [5].

In the current case, on TEE some nodular bright echoes that might correspond to Gamma–Gandy bodies were observed. However, myxomas on TEE are usually heterogeneous and speckled in appearance, even when Gamma–Gandy bodies are not identified by histopathology. On EUS, no images consistent with Gamma–Gandy bodies could be identified. We believe this was probably due to the small size of the nodules in this case.

Left atrium myxomas are the most common primary tumor of the heart. They have an embolic potential and therefore resection is usually recommended even in asymptomatic patients. To the best of our knowledge, there are no previous reports of this entity being diagnosed during EUS. This is probably because primary tumors of the heart are a rare entity but also because sometimes a gastrointestinal-focussed approach is adopted. Nevertheless, a thorough evaluation of all surrounding systems may reveal additional unpredicted diagnoses. The proximity of the esophagus to the heart, in particular the atria, allowed the diagnosis of the mass in our patient. This emphasizes the importance of scanning the structures surrounding the gastrointestinal system during EUS. This proximity of the two systems should prompt greater collaboration between cardiologists and gastroenterologists.

Competing interests: None
Paula Fazendas¹, Pedro Pinto Marques², Francisco Tortosa³, Ricardo Rio Tinto⁴, Cláudia Reis², Carlos Cotrim¹, Helder Pereira¹

¹ Department of Cardiology, Hospital Garcia de Orta, Almada, Portugal
² Department of Gastroenterology, Garcia de Orta, Almada, Portugal
³ Department of Pathology, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
⁴ Department of Gastroenterology, Centro Hospitalar Lisboa Central, Lisbon, Portugal

References

Bibliography

DOI http://dx.doi.org/10.1055/s-0034-1364945
Endoscopy 2014; 46: E122–E123
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Paula Fazendas, MD
Cardiology Department
Hospital Garcia de Orta
Av. Professor Torrado da Silva
2800 Almada
Portugal
Fax: +351-21-2727162
pfazendas@hotmail.com

Fig. 3 Histological analysis of cardiac myxoma (hematoxylin and eosin). a Round, fusiform, and stellate cells in a myxoid matrix. b, c Gammna–Gandy bodies (arrows): multiple small nodules and elongated structures of fibrous tissue impregnated with hemosiderin (iron pigment) and calcium salts, surrounding perivascular spaces.