C-Arm CT – An Adjunct to DSA for Endoleak Classification in Patients with Endovascular Repair of Abdominal Aortic Aneurysms

C-Arm-CT – eine wertvolle Ergänzung zur DSA für Endoleak-Klassifikation bei Patienten nach endovaskulärer Therapie eines Bauchaortenaneurysmas

Purpose: To assess the benefit of C-arm CT for classification and procedural guidance during interventional therapy of endoleaks (EL) after endovascular repair (EVAR) of abdominal aortic aneurysms (AAA).

Materials and Methods: 12 patients with EL diagnosed with CT but undetermined EL classification (ELC) underwent DSA and transarterial contrast-enhanced C-arm CT. ELC (based on DSA, C-arm CT and CT) assessed during the angiographic procedure served as the standard of reference (SOR). Subsequently, ELC was assessed by a blinded second reader based on DSA or C-arm CT and compared to the SOR. In the case of an interventional procedure (n = 6), the added value of C-arm CT for procedure guidance was assessed retrospectively (1: essential, 2: helpful, 3: additional information without impact, 4: no additional information).

Results: The blinded reader classified 9/12 EL using DSA alone and 11/12 EL using C-arm CT alone. In one patient, the temporal resolution provided by DSA was essential to establish the diagnosis. In 6 patients, a type 2 EL without need for therapy was diagnosed. The remaining 6 patients showed EL that were treated immediately (type 1 EL, n = 4: 3 stent graft extensions and one angioplasty; type 2 EL, n = 1: translumbar embolization; type 3 EL, n = 1: sealing of a fabric tear). The information provided by C-arm CT was assessed to be essential in three patients and helpful in two.

Conclusion: C-arm CT is an ideal adjunct to DSA. In our pilot study, it helped to localize and classify endoleaks more reliably than DSA alone.

Citation Format:
Wacker FK, Valdeig S, Raatschen HJ et al. C-Arm CT – An Adjunct to DSA for Endoleak Classification in Patients with Endovascular Repair of Abdominal Aortic Aneurysms. Fortschr Röntgenstr 2014; 186: 247–252
Introduction

Endovascular repair (EVAR) of abdominal aortic aneurysms (AAA) was introduced by Parodi and coworkers in 1991 [1]. In the last two decades, EVAR has emerged as an important alternative to open surgery for selected patients [2, 3]. Unlike patients who are treated with open AAA repair, patients undergoing EVAR require lifelong image surveillance with cross-sectional imaging to monitor the position of the device, to ensure stent graft function, and to detect complications. The occurrence of endoleaks (EL) after EVAR remains one of its principal and most frequent complications [4].

In most centers, bi- or triphasic MDCT is used for follow-up after EVAR with high sensitivity for the presence of endoleaks [5]. Once an EL is detected, high-quality imaging for exact classification is warranted to guide therapy [6]. Although CE ultrasound [7], time-resolved CT [8] and MRI [9] have shown promising results in the classification of EL that are difficult to assess with standard follow-up, DSA is still considered the gold standard due to its high temporal and spatial resolution and its ability to depict flow direction [5]. Another benefit is the ability to perform interventional treatment in the same setting if necessary.

Disadvantages include arterial puncture and the lack of cross-sectional soft tissue information since DSA provides only projection images. This often leads to multiple views and contrast injections to clearly depict feeding arteries of an endoleak free from superimposing structures such as the aorta, the stent graft or other arteries. In contrast to its extremely high spatial resolution, DSA provides limited low-contrast resolution. Therefore, strong contrast enhancement of the endoleak has to be obtained to make it visible. It is well known that small, slow-flow endoleaks can be missed by DSA alone [8, 9].

Cone-beam C-arm CT facilitates acquisition and reconstruction of CT-like images in a flat-panel angiography system. The ability to combine real-time fluoroscopy and DSA with C-arm CT has helped to overcome shortcomings during many interventional procedures [10–12]. For EVAR, there are case reports that demonstrated the feasibility of the intraoperative use of C-arm CT during the EVAR procedure [13–15]. Binkert et al. and van Bindsbergen et al. used C-arm CT to guide translumbar endoleak repair by direct puncture of the perfused aneurysm sac in three and five patients, respectively [16, 17]. However, to the best of our knowledge, the use of C-arm CT for endoleak classification has not been described.

The aim of this study was to investigate the value of C-arm CT as an adjunct to DSA for the classification of endoleaks that could not be classified with noninvasive diagnostic tests.

Method

Patient population

Over a time period of two years, 12 patients with an endoleak detected on a triphasic (unenhanced, arterial and late phase) MDCT follow-up exam 3 to 9 months after EVAR that could not be classified [18] with MDCT were included in this retrospective study. All 12 patients were referred to interventional radiology and underwent digital subtraction angiography (DSA) and angiographic C-arm CT using a flat-panel C-Arm CT (C-arm CT, Axiom Artis dBA, Siemens, Forchheim, Germany) according to a standard image acquisition protocol. Each patient gave informed written consent to perform the angiographic study. The retrospective evaluation was approved by the institutional review board with a waiver of consent granted.

Imaging technique

DSA was performed using an angiographic system (Axiom Artis®, Siemens Medical, Forchheim, Germany) equipped with a 30 × 40 cm flat-panel detector. First, digital subtraction angiography of the aorta (5F Pigtail catheter, 30 mL of iomeprol (Iomeron, Bracco); 300 mg I/ml; flow rate, 20 mL/s, catheter tip 1 cm above the proximal stent graft margin) was performed. Second, the catheter was left in place and a contrast-enhanced C-arm CT scan of the abdominal aorta and the pelvic arteries was acquired (rotation time 8 s, total scan angle 240°, projection angle increment 0.5°, dose per pulse 0.36 µGy) in the arterial phase (contrast injection: 30 mL of iomeprol diluted with 30 mL of saline for a iodine concentration of 150 mg I/mL; flow rate, 8 mL/s; no delay). The cylindrical scan had a cranio-caudal coverage of 185 mm and a transverse and sagittal scan range of 225 mm. For image reconstruction, the raw dataset was sent to a dedicated 3 D image reconstruction workstation (X-Leonardo®, Siemens Healthcare, Erlangen, Germany) to generate an isotropic voxel dataset with a typical voxel size of 0.4 mm. The dataset was visualized using multiplanar reconstructions, maximum intensity projections as well as volume rendering techniques. The generation of a 3 D dataset with a 512 × 512 matrix took less than 1 minute as a 100 mBit/s network connection between the C-arm system and the reconstruction workstation was used.

Data evaluation

During the procedure, DSA, fluoroscopy, and C-arm CT images were reviewed on a workstation by one reader who had access to all available patient information and prior imaging (pre- and post-EVAR MDCT). The type of endoleak was assessed based on all available information first to make a treatment decision and to assess the optimal therapeutic approach during the procedure and second to serve as the standard of reference (SOR) for this study. Subsequently, a blinded second reader (not involved in the procedure) retrospectively evaluated DSA and C-arm CT separately in random order to assess the endoleak classification based on each of the two imaging methods alone.

In case of an interventional treatment (n = 6), the second reader subsequently assessed the value of the C-arm CT images for procedure planning on a 4-point scale (1: essential information for procedure guidance, could not have done without it; 2: helpful information, did alter the course of the intervention; 3: additional information, did not alter the course of the intervention; 4: no additional information).

Results

The EL could be visualized and classified successfully by use of the intra procedural imaging including C-arm CT and all prior imaging by reader 1 in all cases. In 4 patients, a type 1 EL (proximal neck, type 1a: 1 patient; distal neck, type 1b: 3 patients, Fig. 1) was diagnosed. In 7 patients, the EL could be determined as a type 2 EL with retrograde filling of the aneurysm sac from either the inferior mesenteric artery (n = 2) or the lumbar arteries (n = 5) (Fig. 2). In one patient, DSA at an early phase revealed a defect in the graft material (Fig. 3) resulting in a type 3 EL.

The absolute numbers of patients with agreement or disagreement of endoleak classification of DSA alone or C-Arm CT alone
compared to SOR are shown in Table 1. With DSA alone, 9 ELs could be correctly classified. In 3 patients, 1 type 1 and 2 type 2 ELs were missed. This was probably due to slow filling of the EL, DSA artifacts and superimposition of the stent graft. Using the monophasic cross-sectional C-arm CT data, 11 ELs could be correctly classified. In one patient, C-arm CT misleadingly demonstrated a type 2 endoleak with contrast in the sac in close proximity to a lumbar artery (Fig. 3). However, DSA at an early phase revealed a defect in the graft material (Fig. 3c) resulting in a type 3 endoleak classification.

All patients with type 1 EL were treated. In 3 patients, the stent graft was extended proximally (n = 1) or distally (n = 2, Fig. 1). In one patient, an angioplasty of the distal neck was successfully performed. In 6 of 7 patients with type 2 EL, the diameter of the aneurysm sac was stable when compared to the post-EVAR MDCT. In these patients, no immediate therapy was performed. In one case, an increasing AAA sac diameter was noted and a translumbar embolization of the aneurysm sac was performed using C-arm CT-based needle tracking. In the patient with a type 3 endoleak, the fabric tear in the iliac limb was successfully...
covered using a stent graft extension. Subsequently, filling of the endoleak was eliminated which proved the diagnosis of a type 3 endoleak.

In all 6 patients who underwent interventional therapy, the information provided by C-arm CT to plan the respective procedure was assessed by the second reader to be essential in 3 patients and helpful in 2, mainly due to exact localization of the EL. In one patient, C-arm CT provided additional information with respect to stent position and anatomy but had no influence on the course of the intervention.

Discussion

Digital flat detectors allow CT-like soft tissue images in the angiography suite, adding a third dimension to the normally planar DSA images. Although somewhat limited in field of view and image quality when compared to MDCT, the seamless integration of C-arm CT in the interventional suite offers a tremendous improvement in the workflow during complex procedures [19]. There are a few case reports on the use of C-arm CT in the realm of EVAR procedures that demonstrated the feasibility during im-

Table 1 Endoleak classification in DSA and C-arm CT.

<table>
<thead>
<tr>
<th>endoleak classification</th>
<th>patients (n)</th>
<th>SOR</th>
<th>DSA only</th>
<th>C-arm CT only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ = 8 agreement</td>
<td>1 type 1a</td>
<td>«</td>
<td>«</td>
<td>«</td>
</tr>
<tr>
<td>2 type 1b</td>
<td>«</td>
<td>«</td>
<td>«</td>
<td>«</td>
</tr>
<tr>
<td>5 type 2</td>
<td>«</td>
<td>«</td>
<td>«</td>
<td>«</td>
</tr>
<tr>
<td>Σ = 3 disagreement of SOR and DSA</td>
<td>1 type 1b</td>
<td>ND*</td>
<td>«</td>
<td>«</td>
</tr>
<tr>
<td>2 type 2</td>
<td>ND*</td>
<td>«</td>
<td>«</td>
<td>«</td>
</tr>
<tr>
<td>Σ = 1 disagreement of SOR and C-arm CT</td>
<td>1 type 3</td>
<td>«</td>
<td>type 2*</td>
<td>«</td>
</tr>
</tbody>
</table>

SOR: Standard of reference, «: Endoleak classification disagreed with the SOR, =: Endoleak classification agreed with the SOR, ND: Not diagnosed/no classification assessed.

Wacker FK et al. C-Arm CT –… Fortschr Röntgenstr 2014; 186: 247–252
plantation [13–15, 20]. Two case studies reported the use of C-arm CT guidance for endoleak repair [16, 17]. In one study [17], contrast-enhanced C-arm CT was used to visualize the endoleak nidus. However, to the best of our knowledge, the use of C-arm CT to classify endoleaks that are difficult to assess by MDCT has not been described.

With any imaging method, the presence of contrast material in the excluded aneurysm sac after EVAR leads to the diagnosis of an endoleak. Once detected, endoleak classification is critical for patient care. Studies using CTA and MRA alone or in combination yield a high number of undetermined ELs ranging from 40 to 60 percent with relatively poor interobserver agreement [9, 21, 22]. All imaging modalities have specific shortcomings that can make reliable classification difficult. With both, CTA and MRA, scan timing can be challenging. This has led to studies using dynamic CTA with promising results [8] but a relatively high radiation dose. MRA has shown some potential for EL classification but is limited to grafts that do not create a susceptibility artifact [9, 23, 24]. CEUS is a dynamic study that overcomes timing issues with CTA and MRA but has difficulties visualizing both endoleak nidus and feeding vessels, especially in obese patients [5, 7, 23]. Therefore, in some cases exact classification requires the use of DSA which is, despite some shortcomings of its own, still considered the gold standard for endoleak classification, and should be performed especially in cases with a growing sac and equivocal CTA [5, 25]. DSA provides high spatial and temporal resolution and is able to depict flow direction [26]. However, it is recognized to have limited sensitivity for identifying small ELs with slow flow [5]. Here, additional 3D C-arm CT information in combination with intra-arterial contrast injection adds valuable information.

In our study, we successfully acquired C-arm CT images on the angiography table with an intra-arterial angiographic catheter facilitating high intra-arterial contrast medium density in comparison to conventional MDCT. We were able to determine the presence of contrast agent in the sac in all patients and could correctly classify the endoleak in all but one case based on C-arm CT only. Moreover, the full integration of angiography and C-arm CT provided information that helped to guide immediate therapy with the patient never leaving the angio suite.

The main limitations of our study were the small number of patients referred to DSA with undetermined endoleaks and the retrospective evaluation. Although a prospective study with a larger series would be beneficial to assess the technique, we believe that, due to our standardized approach for both DSA and C-arm CT, the results are still meaningful. Another limitation is that the reference standard is based on reading of one operator during the intervention. However, this reading was performed using all available information including DSA and fluoroscopy with the latter not being saved. Therefore, a second reading was not possible. However, in contrast to many studies on endoleak follow-up that did not have a reference standard, we had a true gold standard for 6 patients who were treated in the same setting with a negative finding for the presence of contrast media on follow-up after treatment.

Conclusion

Endovascular repair of aortic aneurysms is performed with increasing frequency. Imaging surveillance is mandatory in EVAR patients to detect complications. Even with reduced follow-up protocols, there will always be endoleaks that require exact classification, especially if expansion of the aneurysm sac is observed [5, 27]. For such cases, C-arm CT offers an ideal adjunct to DSA as it helps to localize and classify endoleaks.

Acknowledgement

This manuscript is dedicated to Professor Bernd Hamm for his 60th birthday.

References

21 Chernyak V, Rozenvit AM, Putlas M et al. Type II endoleak after endoaortic graft implantation: diagnosis with helical CT arteriography. Radiology 2006; 240: 885–893