Klinische Neurophysiologie 2013; 44(03): 176-186
DOI: 10.1055/s-0033-1343200
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle B-Bild-Sonografie tiefer Hirnstrukturen: Qualitätskriterien und diagnostische Wertigkeit

Transcranial B-mode Sonography of Deep Brain Structures: Quality Criteria and Diagnostic Value
U. Walter
Klinik und Poliklinik für Neurologie, Universitätsmedizin Rostock
› Author Affiliations
Further Information

Publication History

Publication Date:
16 September 2013 (online)

Lernziele

Kenntnisse über

  • technische Voraussetzungen der transkraniellen Hirnsonografie

  • Kriterien einer adäquaten Bild- und Befundqualität

  • Erhebung und Klassifikation sonografischer Befunde von diagnostisch relevanten tiefen Hirnstrukturen

  • typische Befundkonstellationen in der Differenzialdiagnostik des idiopathischen Parkinsonsyndroms

 
  • Literatur

  • 1 Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol 2008; 7: 1044-1055
  • 2 Becker G, Berg D. Neuroimaging in basal ganglia disorders: perspectives for transcranial ultrasound. Mov Disord 2001; 16: 23-32
  • 3 Walter U, Behnke S, Eyding J et al. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol 2007; 33: 15-25
  • 4 Go CL, Frenzel A, Rosales RL et al. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. J Ultrasound Med 2012; 31: 191-196
  • 5 Walter U, Kanowski M, Kaufmann J et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage 2008; 40: 551-558
  • 6 Skoloudík D, Walter U. Method and validity of transcranial sonography in movement disorders. Int Rev Neurobiol 2010; 90: 7-34
  • 7 Postert T, Federlein J, Przuntek H et al. Insufficient and absent acoustic temporal bone window: potential and limitations of transcranial contrast-enhanced color-coded sonography and contrast-enhanced power-based sonography. Ultrasound Med Biol 1997; 23: 857-862
  • 8 Kern R, Perren F, Kreisel S et al. Multiplanar transcranial ultrasound imaging: standards, landmarks and correlation with magnetic resonance imaging. Ultrasound Med Biol 2005; 31: 311-315
  • 9 Walter U, Kirsch M, Wittstock M et al. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol 2011; 37: 1382-1391
  • 10 Walter U, Klucken J et al. Hirnsonografie, Riechtestung und motorische Testverfahren in der Frühdiagnose des idiopathischen Parkinsonsyndroms. Akt Neurol 2012; 39: 127-134
  • 11 Oikawa H, Sasaki M, Tamakawa Y et al. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. AJNR Am J Neuroradiol 2002; 23: 1747-1756
  • 12 van de Loo S, Walter U, Behnke S et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 1087-1092
  • 13 Plate A, Ahmadi SA, Pauly O et al. Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol 2012; 38: 2041-2050
  • 14 Blahuta J, Soukup T, Čermák P et al. Ultrasound medical image recognition with artificial intelligence for Parkinson’s disease classification. In: Biljanovic P, Butkovic Z, Skala K, et al., Hrsg. Proceedings of 35th International Convention on Information and Communication Technology, Electronics and Microelectronics. Rijeka: Croatian Society for Information and Communication Technology, Electronics and Microelectronics – MIPRO; 2012: 958-962
  • 15 Chen L, Hagenah J, Mertins A. Feature analysis for Parkinson’s disease detection based on transcranial sonography image. Med Image Comput Comput Assist Interv 2012; 15: 272-279
  • 16 Berg D, Hochstrasser H, Schweitzer KJ et al. Disturbance of iron metabolism in Parkinson's disease – ultrasonography as a biomarker. Neurotox Res 2006; 9: 1-13
  • 17 Walter U, Wagner S, Horowski S et al. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology 2009; 73: 1010-1017
  • 18 Berg D, Godau J, Riederer P et al. Microglia activation is related to substantia nigra echogenicity. J Neural Transm 2010; 117: 1287-1292
  • 19 Berg D, Becker G, Zeiler B et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 1999; 53: 1026-1031
  • 20 Mehnert S, Reuter I, Schepp K et al. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol 2010; 10: 9
  • 21 Hagenah J, König IR, Sperner J et al. Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage 2010; 51: 28-32
  • 22 Behnke S, Double KL, Duma S et al. Substantia nigra echomorphology in the healthy very old: Correlation with motor slowing. Neuroimage 2007; 34: 1054-1059
  • 23 Budisic M, Trkanjec Z, Bosnjak J et al. Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand 2009; 119: 17-21
  • 24 Ressner P, Skoloudík D, Hlustík P et al. Hyperechogenicity of the substantia nigra in Parkinson’s disease. J Neuroimaging 2007; 17: 164-167
  • 25 Mijajlović M, Dragasević N, Stefanova E et al. Transcranial sonography in spinocerebellar ataxia type 2. J Neurol 2008; 255: 1164-1167
  • 26 Stockner H, Sojer M, Seppi K et al. Midbrain sonography in patients with essential tremor. Mov Disord 2007; 22: 414-417
  • 27 Fedotova EI, Chechetkin AO, Shadrina MI et al. Transcranial sonography in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2011; 111: 49-55
  • 28 Kim JY, Kim ST, Jeon SH et al. Midbrain transcranial sonography in Korean patients with Parkinson’s disease. Mov Disord 2007; 22: 1922-1926
  • 29 Huang YW, Jeng JS, Tsai CF et al. Transcranial imaging of substantia nigra hyperechogenicity in a Taiwanese cohort of Parkinson’s disease. Mov Disord 2007; 22: 550-555
  • 30 Hagenah JM, König IR, Becker B et al. Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles. J Neurol 2007; 254: 1407-1413
  • 31 Glaser M, Weber U, Hinrichs H et al. Transkranielle Sonographie des Mittelhirns mit verschiedenen Ultraschallsystemen. Klin Neurophysiol 2006; 37:  165-168
  • 32 Becker G, Becker T, Struck M et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: a transcranial color-coded real-time sonography study. Biol Psychiatry 1995; 38: 180-184
  • 33 Becker G, Seufert J, Bogdahn U et al. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 1995; 45: 182-184
  • 34 Berg D, Behnke S, Seppi K et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013; 28: 216-219
  • 35 Walter U. Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: no. J Neural Transm 2011; 118: 607-612
  • 36 Doepp F, Plotkin M, Siegel L et al. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord 2008; 23: 405-410
  • 37 Walter U, Niehaus L, Probst T et al. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 2003; 60: 74-77
  • 38 Gaenslen A, Unmuth B, Godau J et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol 2008; 7: 417-424
  • 39 Behnke S, Berg D, Naumann M et al. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry 2005; 76: 423-425
  • 40 Walter U, Dressler D, Probst T et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol 2007; 64: 1635-1640
  • 41 Busse K, Heilmann R, Kleinschmidt S et al. Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry 2012; 83: 441-447
  • 42 Berg D, Marek K, Ross GW et al. Defining at-risk populations for Parkinson’s disease: lessons from ongoing studies. Mov Disord 2012; 27: 656-665
  • 43 Schmidauer C, Sojer M, Seppi K et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann Neurol 2005; 58: 630-634
  • 44 Godau J, Schweitzer KJ, Liepelt I et al. Substantia nigra hypoechogenicity: definition and findings in restless legs syndrome. Mov Disord 2007; 22: 187-192
  • 45 Kwon DY, Seo WK, Yoon HK et al. Transcranial brain sonography in Parkinson’s disease with restless legs syndrome. Mov Disord 2010; 25: 1373-1378
  • 46 Moringlane JR, Fuss G, Becker G. Peroperative transcranial sonography for electrode placement into the targeted subthalamic nucleus of patients with Parkinson disease: technical note. Surg Neurol 2005; 63: 66-69
  • 47 Becker G, Berg D, Lesch KP et al. Basal limbic system alteration in major depression: a hypothesis supported by transcranial sonography and MRI findings. Int J Neuropsychopharmacol 2001; 4: 21-31
  • 48 Walter U, Hoeppner J, Prudente-Morrissey L et al. Parkinson’s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 2007; 130: 1799-1807
  • 49 Budisic M, Karlovic D, Trkanjec Z et al. Brainstem raphe lesion in patients with major depressive disorder and in patients with suicidal ideation recorded on transcranial sonography. Eur Arch Psychiatry Clin Neurosci 2010; 260: 203-208
  • 50 Walter U, Prudente-Morrissey L, Herpertz SC et al. Relationship of brainstem raphe echogenicity and clinical findings in depressive states. Psychiatry Res 2007; 155: 67-73
  • 51 Godau J, Wevers AK, Gaenslen A et al. Sonographic abnormalities of brainstem structures in restless legs syndrome. Sleep Med 2008; 9: 782-789
  • 52 Postert T, Eyding J, Berg D et al. Transcranial sonography in spinocerebellar ataxia type 3. J Neural Transm Suppl 2004; 68: 123-133
  • 53 Wolters A, Walter U, Benecke R et al. Charakterisierung autosomal-dominanter spinozerebellärer Ataxien mittels transkranieller Magnetstimulation und transkranieller Hirnparenchymsonographie. Klin Neurophysiol 2005; 36:  9-13
  • 54 Synofzik M, Godau J, Lindig T et al. Transcranial sonography reveals cerebellar, nigral, and forebrain abnormalities in Friedreich’s ataxia. Neurodegener Dis 2011; 8: 470-475
  • 55 Seidel G, Kaps M, Gerriets T et al. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 1995; 5: 105-108
  • 56 Walter U, Dressler D, Wolters A et al. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology 2004; 63: 504-509
  • 57 Wollenweber FA, Schomburg R, Probst M et al. Width of the third ventricle assessed by transcranial sonography can monitor brain atrophy in a time- and cost-effective manner--results from a longitudinal study on 500 subjects. Psychiatry Res 2011; 191: 212-216
  • 58 Krogias C, Hoffmann K, Eyding J et al. Evaluation of basal ganglia, brainstem raphe and ventricles in bipolar disorder by transcranial sonography. Psychiatry Res 2011; 194: 190-197
  • 59 Naumann M, Becker G, Toyka KV et al. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology 1996; 47: 1284-1290
  • 60 Walter U, Blitzer A, Benecke R et al. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia. Eur J Neurol [Epub ahead of print]
  • 61 Gerriets T, Stolz E, König S et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke 2001; 32: 442-447
  • 62 Berg D, Mäurer M, Warmuth-Metz M et al. The correlation between ventricular diameter measured by transcranial sonography and clinical disability and cognitive dysfunction in patients with multiple sclerosis. Arch Neurol 2000; 57: 1289-1292
  • 63 Ebentheuer J, Canelo M, Trautmann E et al. Substantia nigra echogenicity in progressive supranuclear palsy. Mov Disord 2010; 25: 773-777
  • 64 Walter U, Buttkus F, Benecke R et al. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians. Neurodegener Dis 2012; 9: 99-103
  • 65 Walter U. Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 2010; 90: 166-178
  • 66 Postert T, Lack B, Kuhn W et al. Basal ganglia alterations and brain atrophy in Huntington’s disease depicted by transcranial real time sonography. J Neurol Neurosurg Psychiatry 1999; 67: 457-462
  • 67 Walter U, Dressler D, Wolters A et al. Transcranial brain sonography findings in clinical subgroups of idiopathic Parkinson’s disease. Mov Disord 2007; 22: 48-54
  • 68 Ritter MA, Dittrich R. Morbus Fahr: Extremausprägung der bilateralen striopallidodentaten Kalzinose – Dokumentation mit CCT und transkranieller Sonografie (TCS). Klin Neurophysiol 2010; 41: 33-34
  • 69 Brüggemann N, Schneider SA, Sander T et al. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord 2010; 25: 2661-2664