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Introduction
▼
Biomarkers are currently a topic of intense re-

search in science and medicine. However, biolo-

gical markers have been used for thousands of

years. Already in the ancient world, physicians

used biomarkers for diagnosis. Probably the

most well-known example is the examination of

urine, which was described by Galen in the se-

cond century. In the Middle Ages, uroscopy was

considered an almost infallible diagnostic tool

for almost all diseases. Some of these indicators

are still in use, such as glucose in the urine as

evidence for diabetes mellitus. At the same time,

many more characteristics are used as biomar-

kers by now, so that the development of very ge-

neral definitions was necessary [1, 2].

Definition
According to Gallo et al. [2], the most common

definition for a biomarker is as follows: “... a bio-

marker is any substance or biological structure

that can be measured in the human body and

may influence, explain, or predict the incidence

or outcome of disease”. However, it may be ques-

tioned whether the restriction of measurement

in the human body is reasonable. An alternative

is to define a biomarker as “any substance, struc-

ture or process that can be measured in biospeci-

mens and may be associated with health-related

outcomes” [2]. In our opinion, this definition is

too general, and the definition should include a

specific association with health or a clinical out-

come [1]. We therefore prefer the definition by

the Biomarkers Definitions Working Group [3] of

the National Institutes of Health: “A biomarker is

a characteristic that is objectively measured and

evaluated as an indicator of normal biological

processes, pathogenic processes or pharmacolo-

gic responses to a therapeutic intervention.” Mo-

lecular biomarkers in particular are biomarkers

that can be detected using molecular technolo-

gies such as genomics or proteomics, or imaging

techniques; for a comprehensive definition, see

Ziegler et al. [1].

Prognostic, diagnostic, and predictive 
biomarkers
Biomarkers are currently applied in all patient-

relevant areas, in diagnosis, prognosis, and thera-

py. While prognostic biomarkers predict the pa-

tients’ disease course, diagnostic biomarkers al-

low determining the disease. By definition, pre-

dictive biomarkers are linked to the treatment of

a patient. For example, predictive biomarkers

estimate the probability for the success of a spe-

cific therapy, or the probability for a specific se-

vere adverse event of an intervention. They thus

offer guidance in the selection of the best thera-

py for a patient.

In the context of predictive biomarkers, the

terms “personalized medicine” or “stratified me-

dicine” are often used. Both terms usually refer

to the identification of the optimal therapy and

dosing and/or the optimal timing of a therapy in

a subgroup of patients. However, it is recommen-

ded to extend these terms to also include (1) ref-

raining from the application of a therapy due to

adverse events, (2) preventive measures, or (3)

the tailored intervention for a single patient [1].

For example, DNA biomarkers can be used in pa-

tients with prostate cancer to decide whether a

close surveillance is an equitable option over an

immediately starting tumor therapy. It may be

possible that a radical surgical intervention follo-

wed by radiotherapy or chemotherapy is only in-

dicated if the patient has an aggressive form of

the tumor [4]. In other scenarios, such as some

heritable tumors, biomarker profiles may be

used to initiate preventive interventions. Here,

the result of an individual genetic test can guide

the decision for a specific, sometimes very radi-

cal intervention, such as preventive surgery [4].
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The ACCE model
▼
Which biomarker is a good biomarker? According to the ACCE

model that was developed by the Center of Disease Control

(CDC), a biomarker is evaluated using four criteria [5]:

1. Analytical validity,

2. Clinical validity,

3. Clinical utility, and

4. Ethical, legal, and social implications.

Analytical validity indicates the technical reliability of a biomar-

ker. Here, we differentiate between accuracy, trueness, and pre-

cision according to the German norm [6]. Trueness measures

whether the mean of a large series of experiments is close to the

theoretically expected value, and it is therefore sometimes ter-

med accuracy of the mean. In contrast, precision considers the

variability of the measurements. Finally, accuracy is the combi-

nation of both.

Clinical validity specifies the value of the biomarker in detecting

or predicting a disease. In practice, it is impossible to define a

general threshold for accepting a biomarker to be clinically va-

lid. Instead, this depends on whether alternative prognostic mo-

dels are available, on the aim of biomarker testing, and on the

burden of the specific disease. In general, it is difficult to justify

using a diagnostic biomarker without adequate therapeutic op-

tions, regardless of its value.

Evaluating the clinical utility of a biomarker will be described in

detail in the following section. The final criterion of the ACCE

model considers ethical, legal and social implications that may

arise in the context of a biomarker. These are detailed in the lite-

rature (e. g., [7]).

Levels of evidence and phases of diagnostic studies
▼
To justify the use of a biomarker in practice, its clinical utility

must have been shown, and this requires high analytical validity

as well as high clinical validity. For this, the evaluation of the cli-

nical validity critically depends on the quality of the clinical tri-

als.

For diagnostic studies, the Federal Joint Committee in Germany

(Gemeinsamer Bundesausschuss) has laid down the levels of

evidence shown in qTable  1 for its code of procedure. These

levels of evidence are equally valid for screening methods. The

highest level of evidence is assigned to randomized therapeutic

trials and meta-analyses of randomized therapeutic trials. This

raises the question how biomarkers for diagnostic purposes

can be evaluated in the context of randomized therapeutic

trails. As described above, the result of a diagnostic biomarker

should have an effect on the subsequent intervention, i. e., the

biomarker should be predictive. Accordingly, the best clinical

utility is obtained for diagnostic biomarkers with proven value

for application in one or more randomized therapeutic studies.

Through this, a diagnostic biomarker becomes a predictive bio-

marker.

For purely diagnostic biomarkers with level II or lower, utility

has not been investigated in the context of interventions. As a

result, they have a lower level of evidence. However, the study

design and the methodological quality of diagnostic studies af-

fects the level of evidence critically. And the utilized study de-

signs in turn depend on the phase of the biomarker study.

In general, we can distinguish four phases for diagnostic and

prognostic biomarker studies (qTable  2) [1, 8–12]. Phase I

comprises preliminary technical and methodological studies. In

these, it is investigated whether the biomarker is, in principle,

suitable as a diagnostic biomarker. The typical study design for a

phase I study is a case-control study with patients and healthy

controls, often with extremely affected patients and unequivo-

cally healthy or even hypernormal controls.

This phase can even be subdivided into smaller steps, because

modern technologies allow for the measurement not only of a

single biomarker but of possibly several million biomarkers si-

multaneously (phase Ia). Out of this multitude of measure-

ments, the correct biomarker or set of biomarkers has to be se-

lected. For the single molecule, these high-throughput technolo-

gies are typically not as accurate as other technologies that are

specifically tailored to a single biomarker. Thus, this phase usu-

ally also includes the analytical validity of the biomarker, e. g.,

the development of a specific assay (phase Ib).

Table  1  Levels of evidence for diagnostic methods according to § 11, para. 2, of the code of procedure of the Federal Joint Committee (Gemeinsamer Bundes-
ausschuss), lastly modified on 2012 [65].

Level of evidence Criterion

I a Systematic reviews of trials with evidence level I b

I b Randomized controlled trials

I c Other intervention studies 

II a Systematic reviews of diagnostic accuracy studies with evidence level II b

II b Cross sectional and cohort studies allowing to calculate all diagnostic accuracy statistics (sensitivity and specificity, 

likelihood ratios, positive and negative predictive value)

III Other studies allowing to calculate diagnostic accuracy statistics (sensitivity and specificity, likelihood ratios)

IV Observations of associations, pathophysiological considerations, descriptive reports, case reports, and the like; expert opinions 

with no explicit critical appraisal, reports from expert committees and consensus conferences
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The sample sizes for these initial studies are generally small, be-

cause the high-throughput technologies are often rather expen-

sive. Therefore, samples from biobanks are usually utilized to

evaluate the diagnostic value of a novel biomarker (set) before

conducting more cost-intensive larger validation studies (phase

Ic). A combination of several biomarkers might prove to be more

promising than a single biomarker measurement. The optimal

combination of several biomarkers in a multimarker rule is of-

ten evaluated within the same phase using elaborate biostatisti-

cal approaches, such as machine learning algorithms.

In phase II, the validity is evaluated retrospectively in selected

probands. This aims at answering the question whether the test

fulfills its purpose by, e. g., detecting the disease.

Phase III is reserved for controlled diagnostic studies investiga-

ting the accuracy of the test in clinical practice. The typical stu-

dy design for this phase is a cohort study in symptomatic pati-

ents. Finally, the aim of phase IV is to show efficacy of the bio-

marker. Thus, the first step of this phase evaluates how the test

influences the clinical course. After this, cost-benefit analyses

are performed. Our own practical experience has shown that a

finer grading of the four phases is helpful, especially concerning

the early phase I [1].

Basic methodological principles for validation studies 
of diagnostic biomarkers
▼
The critical feature of validation studies for biomarkers in phase

III is the prospective and consecutive recruitment of symptoma-

tic patients who represent the usual patient spectrum. Validati-

on studies in phase IV are randomized therapeutic trials. Here,

very specific study designs are often used [1, 13–19], but the

most important methodological element of these studies is the

randomization. However, high methodological quality and,

through this, validity of a diagnostic studies is not guaranteed

by randomization or prospective recruitment alone. Indeed, a

number of basic methodological principles need to be conside-

red for both study types. Specifically, for phase IV validation

studies, the same basic principles as for all therapeutic studies

apply [20].

The basic principles of diagnostic studies for phases I to III are

compiled in qTable  3 [8, 21, 22]. If these principles are not ad-

hered to, estimates of sensitivity and specificity, i. e., of the clini-

cal validity of the biomarker, can be substantially biased.

Important sources of bias in validation studies 
of diagnostic biomarkers
▼
There are many possibilities for errors in study designs that can

lead to biases in diagnostic studies. If we consider, as in a recipe,

the different ingredients of a diagnostic study, we firstly require

Table  2 Phases of diagnostic or prognostic biomarker studies, see Ref. [1].

Phase Description Aim of study Typical sample sizes

Ia Discovery Identification of promising biomarkers 10–100

Ib Assay development, assay validation Define and optimize analytical process into robust, reproducible, 

and valid device

10–100

Ic Retrospective validation Clinical assay detects disease; development of first algorithm 

for combination test

50–500

II Retrospective refinement Validation of early detection properties of biomarker (set); develop-

ment and/or refinement of algorithm(s) for combination tests

100–1000

III Prospective investigation Determination of diagnostic accuracy (sensitivity, specificity) in the 

situation of clinical routine

200–1000

IVa Randomized controlled trial Quantification of effect of making the biomarker information 

available to the doctor to reduce disease burden

200–1000

IVb Health economics study Quantification of cost-effectiveness Strongly depends on clinical 

consideration of clinical risk

Table  3 Basic principles of validation studies for diagnostic biomarkers. Adapted from Weinstein et al. [21].

Principle Explanation

Two groups of patients Patients with the disease for estimating sensitivity; group of subjects without disease for estimating specificity

Well-defined patient samples Independent of ascertainment scheme: description of patient characteristics (e. g., age, gender, disease stage, 

comorbidities)

Well-defined diagnostic test Clear definition of diagnostic test; application to all study participants in identical way

Gold standard / reference standard Determination of true disease status of all study participants by perfect standard or best standard available

Sample of raters If test requires trained raters, two or more raters required

Blinded investigation Independent and blind assessment of reference standard and diagnostic test

Standardized reporting of results Report according to respective recommendations for studies on diagnostic accuracy
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study probands. Thus, one of the most important disturbance

source is the bias that can arise by selective recruitment or wil-

lingness to participate.

Next, we require an index test, which is the selected biomarker

that is being tested. For this, random but also systematic errors

can occur in the laboratory. In addition, a reference standard is

needed for comparison with the novel test. Again, there are a

number of sources of error, and the relevant problems will be

described below. The interplay of the index test and the refe-

rence test is illustrated in the proof of citrullinated peptides

(ACPA) for rheumatoid arthritis [23]. The index test for ACPA is

an ELISA of the third generation, the reference standard usually

is the classification based on the criteria of the American College

of Rheumatology.

When evaluating diagnostic accuracy, it needs to be considered

that there might be an interaction between the index test and

the reference standard. For example, the two tests might have

been applied at time points that are different enough to allow

for a change in the true condition. Also, knowing the result of

one test might influence in some way the proceeding for the

other test or the result, even if the proceeding remains the sa-

me. Another possibility for errors lies in the rating of the test

itself.

After the study has been conducted, the data are analyzed. Here,

one question is how to handle missing data or results that can-

not be interpreted. Finally, the diagnostic study needs to be pu-

blished comprehensively, and errors can be avoided by publi-

shing according to the STARD (Standards for Reporting of Diag-

nostic Accuracy) statement [24].

qTable  4 summarizes the sources of bias described so far, and a

more detailed discussion can be found in the literature [21, 25–

29].

Biases on the subject level
▼
Since a non-representative selection is the most important

source of bias, the first entry in qTable  4 is the spectrum com-

position bias. The possibilities for a selection bias are manifold

[28, 30, 31], and Box 1 gives a more elaborate list of recruitment

problems that can lead to this bias; the first three entries given

there are summarized under the term spectrum composition

bias.

Selection bias
A number of systematic reviews have shown that selection bias

is the source of bias with the most detrimental effect on the

estimation of sensitivity and specificity in validation studies of

biomarkers [25–27, 32]. qFigure 1 summarizes the findings of

the systematic reviews, and it specifically shows how the esti-

mates of accuracy change whenever a specific methodological

criterion for the study design is not fulfilled, as compared to the

situation in which it is fulfilled. Accuracy is here expressed by

the odds ratio, and a relative diagnostic odds ratio greater than 1

means that studies not fulfilling the criterion yield higher accu-

racy estimates [27].

If extremely affected cases are compared with healthy controls,

the diagnostic accuracy is overestimated by about 5-fold on ave-

rage. A classical example for this is the diagnosis of colorectal

cancer based on carcinoembryonic antigen (CEA) [33]. In a case-

control study including only patients with known advanced co-

lorectal or rectal cancer, the CEA was found to be increased in 35

of the 36 patients, while it was considerably lower in healthy

controls [34]. In subsequent studies, patients were included in

earlier stages of colorectal cancer, and the accuracy of the CEA

Table  4 Important sources of bias in validation studies for diagnostic biomarkers. Adapted from ref. [21].

Bias Explanation

Spectrum composition bias Spectrum of patients not representative of the patients who will receive the test in practice

Partial verification bias Reference standard is applied only to a selected part of the patients, not all

Differential verification bias Use of different reference standards, use depending on test result

Disease progression bias Time period between reference standard and index test so long that target condition might have changed

Incorporation bias Reference standard and index test not independent; special case: Index test part of reference standard

Test review bias Index test results interpreted with knowledge of results of reference standard

Reference standard review bias Reference standard results interpreted with knowledge of results of index test

Clinical review bias Index test interpreted in the light of clinical data that would not be available when test used in practice

Box 1  Reasons for selection bias.

The control group consists of extremely healthy individuals 
(hypernormal controls);
3 only cases with a restricted disease spectrum are enrolled, 

e. g., more severely affected cases (selection for symptoms; 

severe cases);

3 enrollment of patients differs between the study and 

clinical practice; e. g., the patient spectrum differs between 

an emergency unit and a day hospital;

3 individuals are enrolled depending on the result of the index 

test (referral for index test bias); this bias is not identical to 

verification bias; for verification bias, the reference standard 

is not applied in all probands of the study;

3 healthy probands do not appear for the follow-up so that 

their data are missing (loss to follow-up bias);

3 only a restricted spectrum of probands participates in 

the study; e. g. only patients with a confirmed diagnosis 

(participation bias, also self-selection bias);

3 only individuals with specific previous examinations are 

included (limited challenge bias);

3 only individuals with specific previous diagnoses are 

included (increased challenge bias);

3 only individuals are included who are „suitable” and 

„can endure” the trial (study examination bias).
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test decreased decidedly (e. g., [35]). Consequently, the CEA test

was banned from clinical routine for diagnosis as well as for

screening [33].

Impressive differences in the estimation of accuracy were de-

monstrated by Lachs et al. [36] in their investigation of the leu-

kocyte esterase and bacterial nitrite rapid dipstick test for uri-

nary tract infection (UTI). The study consecutively recruited 366

adult patients. Of these, 107 patients had a high prior probabili-

ty for UTI based on clinical signs and symptoms. In these, the

sensitivity of the dipstick test was 92 % at a specificity of 42 %. In

contrast, in the remaining 259 patients with lower prior proba-

bility, sensitivity and specificity were 56 % and 78 %, respectively.

Thus, the composition of the patient group led to completely

different characteristics of the biomarker test.

The bias is less extreme in case-control study designs including

not extremely affected patients. Still, case-control studies may

give very optimistic estimates with an overestimation of the di-

agnostic accuracy in the order of three.

There are many further examples in the literature showing how

the selection of the study sample can yield to biased results,

even in the case of prospective studies instead of case-control

studies. For instance, a prospective study examined fetuses at a

gestational age between 11 and 14 weeks by ultrasound to eva-

luate the diagnostic value of a missing nasal bone as an indicator

for a chromosomal anomaly [37]. The sensitivity was estimated

to be 69 % (qFigure 2a). However, the analysis was restricted to

those fetuses with trisomy 21, which was also indicated in the

title of the study. The reference standard in the study was chori-

onic villus sampling [37], and this as well as amniocentesis can

also detect other forms of chromosomal anomalies. Through

this, 295 fetuses were excluded from analysis, of whom 124 had

trisomy 18.  In these, the sensitivity was only 32 %. Since the sen-

sitivity in all fetuses was at 52 % (qFigure 2b), the test for de-

tecting chromosomal anomalies is about as good as a coin toss.

Consecutive subject recruitment
Recruiting subjects non-consecutively does not necessarily lead

to bias (qFigure 1). If the subjects are recruited selectively, this

non-consecutive recruitment is likely to result in bias. In other

scenarios, this may not be the case. However, it is important

that bias cannot be excluded using a non-consecutive recruit-

ment, and the bias can be large. Surprisingly, bias can occur

even if subjects are selected at random (qFigure 1), because

this is not a consecutive series of probands.

Retrospective versus prospective study
As opposed to clinical trials, the terms „prospective“ and „retro-

spective“ are not defined coherently for biomarker studies. In

general, a prospective study implies that all investigations are

planned before they are conducted. This especially means that

subjects are recruited only after the study has been designed. In

contrast to that, many studies use data from already completed

randomized controlled trials. Then, hypotheses on specific bio-

markers are formulated prospectively and tested prospectively

in available biospecimen. This approach has the advantage that

the material can usually be attained according to stringent qua-

lity criteria and a strict protocol. But the biobank might be very

restricted regarding the time point at which the material is coll-

ected as well as the specific kind of available material. Thus, the

biobank might be inadequate for studies on proteins or metabo-

lites. Since their concentrations can change very fast, a specific

time point of probe extraction and a defined measurement

point may be relevant; a more detailed discussion is given in the

literature [17, 38]. Therefore, the biospecimen has to be availab-

le at a specific point in time, which is not a problem in prospec-

tive recruitment. However, in other studies the time point of

measurement is irrelevant, for instance in the determination of

genetic markers, i. e. DNA markers, because they are constant

over the life span.

In contrast to prospective studies, in retrospective studies sub-

jects have already been recruited, and the measurement of bio-

markers has already been performed. This approach is often fol-

lowed in genetic studies. Here, data of several so-called geno-

me-wide association studies are often utilized to confirm novel

biomarker findings. This form of retrospective study is usually

termed “in-silico replication”.

As a general rule, prospective studies lead to less bias than ret-

rospective studies. However, there are exceptions [38], and the-

re are some scenarios in which a retrospective study can be bet-

ter than a prospective study. Obviously, retrospective studies

are less time and cost intensive than prospective studies. On the

other hand, a prospective study typically has a higher validity,

because a standardized study conduct allows for a consistent

quality control of all data. However, this can also be the case for

a well-maintained biobank.

Figure 1. Effect of different characterics of the study design on the esti-
mates of diagnostic accuracy reported by Lijmer et al. (reference L) [26]
and Rutjes et al. (reference R) [27].

Study characteristics

Severe cases/healthy controls

Other case-control designs

Any case-control design

Non consecutive

Non consecutive

Random sample

Selection referral for index test

Retrospective

Retrospective

Differential verification

Differential verification

Not blinded

Post hoc definition of cutoff

Relative diagnostic
odds ratio

0 1 2 3 4 5 6

Underestimated Overestimated Reference

L

L

R

R

R

R

R

R

R

R

L

L

L

Figure 2. Selection bias. a) observed frequencies including only fetuses
with trisomy 21, b) observed frequencies including all fetuses with chro-
mosomal anomalies.

a Chromosomal anomaly

Nasal bone Yes No

Absent 229 129

Present 104 5094

b Chromosomal anomaly

Nasal bone Yes No

Absent 324 129

Present 304 5094
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On the other hand, bias can occur also in prospective studies.

For instance, observational and treatment equivalence is violat-

ed if the treating or otherwise involved clinicians know the test

result, and if knowledge of the test result affects their behavior.

In retrospective studies, it has to be questioned whether the

data are complete, assessed in a standardized manner and at

correct time points, and whether selection bias might have oc-

curred.

In conclusion, prospective studies are almost always superior to

retrospective studies. This has been confirmed in the systematic

review by Rutjes et al. [27] who showed that retrospective stu-

dies overestimate the diagnostic accuracy of a test by 60 %.

Selection based on the index test
If recruitment for a study deliberately depends on the result in

the index test, a surprising trend for bias arises, which has been

described in detail by Knotterus und Muris [38]. For example,

one may preferentially include subjects with clear symptoms, or

those with results from unreliable tests, or those with conflic-

ting test results, or even those with a positive result in the index

test. It is often difficult to differentiate patients with clear sym-

ptoms but possibly another differential diagnosis, so that the ac-

curacy of the evaluation declines. Accordingly, this approach

tends to yield an underestimation of accuracy (qFigure 1) [27].

Biases on the test level
▼
In many applications, it is extremely challenging to decide

which procedure to use as reference standard. Obviously, the re-

ference standard should be (nearly) perfect. However, even ex-

perienced pathologists or radiologists are not infallible. Moreo-

ver, a reference standard is not always available for some diag-

nostic problems as for epilepsy, or application of the reference

standard is not ethical based on its high potential for risk. How-

ever, even in these situations, the biomarker measurement can

be compared with the results from other tests, and sensitivity

and specificity can be reported, which would be better than

simply excluding patients from studies.

Verification bias
The most important source of bias is selection bias, which has

been described above, and the second most important source of

bias is verification bias. Synonymously used are the terms work-

up bias, referral bias, or ascertainment bias. A specific distinc-

tion is made between partial verification bias, arising when the

reference standard is applied to only a part of the probands, and

differential verification bias. The latter occurs if different refe-

rence standards are applied depending on the result of the in-

dex test, i. e., the biomarker; this is also termed double gold

standard bias or double reference standard bias.

Differential verification bias results in an overestimation of the

study results (qFigure 1). It often occurs if the reference stan-

dard is based on an invasive procedure, such as surgery. Then,

this invasive diagnostics is only applied in test positive individu-

als, and another reference standard, such as a clinical monito-

ring, is applied in subjects with negative test results.

An example for this is the study on lung ventilation/perfusion

scintigraphy for the diagnosis of lung embolism [39]. Here, the

reference standard is a radiological inspection of the lung artery,

which is preferentially applied after a positive result from scin-

tigraphy. Patients with a negative result are preferentially moni-

tored only.

Similar to differential verification bias, partial verification bias

can lead to substantial bias, although this phenomenon is not as

wide-spread in practice. Detailed descriptions are given in the

literature [40, 41].

Whereas real examples are given in references [40–44],

qFigure 3 includes a fictitious example. Assume that the refe-

rence standard is applied in only 25 % subjects with a negative

result in the index test, but in all subjects with a positive result

in the index test. Furthermore, assume that we observe the fre-

quencies that are shown in qFigure 3a in the study. To calcula-

te sensitivity, only subjects with positive reference standard are

required. Using the observed frequencies, the sensitivity equals

80 % (= 80/[80 + 20]). At the same time, the specificity requires

only subjects with negative reference standard, and also equals

80 % (= 40/[40 + 10]).

However, the observed frequencies need to be corrected for the

calculation of sensitivity and specificity, since the reference

standard was applied in only 25 % of the biomarker negative, i. e.

index test negative, individuals. Results from a simple extrapo-

lation are given in qFigure 3b. For this, the frequencies of test

negatives from qFigure 3a are increased by a factor of 3. Using

these corrected numbers, sensitivity decreases to 50 % (= 80/[80 

+ 80]) and specificity increases to 94.11 % (= 160/[160 + 10]).

Thus, partial verification bias led to a drastic overestimation of

the sensitivity but a clear underestimation of the specificity in

this fictitious study. Through this, the proportion of correctly

diagnosed subjects decreases from 80 % (= [80 + 40]/[80 + 10 + 

20 + 40]) to 72.72 % (= [80 + 160]/[80 + 10 + 80 + 160]). To cor-

rect for partial verification bias, two well-known statistical ap-

proaches have been suggested in the literature, namely the

Begg-Greenes method [45] and the Diamond method [46].

Analogously, using different reference standards, i. e., differenti-

al verification bias, leads to an overestimation of diagnostic ac-

curacy by 60 % compared with studies using only one reference

standard.

a Reference standard

Index test Positive Negative

Positive 80 10

Negative 20 40

Index test Positive Negative

Positive 80 10

Negative 20 + 60 = 80 40 + 120 = 160

b Reference standard

Correction for verification bias

Figure 3. Partial verification bias. a) observed fre-
quencies, b) corrected frequencies.
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Blinding
On the test level, the most obvious error source is the lack of bl-

inding. With no blinding, an overestimation of the diagnostic

accuracy is likely, and this bias is termed review bias. Naturally,

blinding is more important when using soft outcome criteria

such as clinical symptoms, compared with hard endpoints such

as biomarker measurements in the laboratory – although these

can often be blinded easily using an adequate coding of the sam-

ples. The price to be paid for lack of blinding is an overestimati-

on of diagnostic accuracy of about 30 % on average [27].

Gold standard versus reference standard
The previous sections always used the term reference standard

which is also used in some of the guidelines, such as the STARD

Statement [24]. In common speech as well as in the literature,

the term gold standard is also used. Here, the gold standard in-

dicates the true disease state of an individual. In contrast, the re-

ference is the best available method to indicate the disease state

of the individual [47]. It is important to note that gold standard

and reference standard may differ. A specific issue is that the re-

ference standard may be flawed but might coincide better with

the index test, i. e., the biomarker test. In any case, estimates of

sensitivity and specificity may differ if gold standard and refe-

rence standard are not identical.

Although the reference standard should be as perfect as possib-

le, it is often difficult to choose a sensible reference standard in

practice. Imaging studies often use surgery, pathological fin-

dings or the clinical follow-up as standard [21]. The example in

reference [48] shows that the validity of the entire study is

questioned if a reference standard is applied that does not con-

form to the usual standard [49]. Specifically, Dehdashti et al.

[48] used a barium meal as reference standard for the diagnosis

of gastroesophageal reflux disease, although this is not suppor-

ted by the North American Society for Pediatric Gastroenterolo-

gy, Hepatology and Nutrition. Instead, the current reference

standard is monitoring the pH value in the esophagus. In combi-

nation with further methodological issues, the author of a letter

to the editor [49] stated that “..., this study has several critical

methodological flaws, …”.

Inclusion bias: Reference standard and index test are 
not independent
In some cases, the index test is part of the reference standard.

Thus, the two tests are not independent from each other. The

most prominent example for this has been given by Guyatt et al.

[33]. In a study on screening instruments for depression in pati-

ents with terminal disease, 100 % sensitivity and 100 % specifici-

ty were observed. Here, the index test consisted of 9 questions

and included the question: „Are you depressed?“

A second example is the study by Harvey [50] who investigated

107 patients with thyrotoxicosis. The final diagnosis was based

on all available information, including the results from a thyroid

function test. It was concluded that clinical disease severity was

associated more strongly with concentration of free thyroxine

than with any other considered index. However, the concentra-

tion of free thyroxine had been used for the primary diagnosis

[51]. Therefore, all patients in the study naturally had concent-

rations of free thyroxine outside of the reference interval

(qFigure 4).

Bias on the level of evaluating the test results
▼
Missing values
In many molecular tests, the result is not unambiguous for eve-

ry proband, i. e., it is unclear, uncertain or not determined. How-

ever, values cannot simply be excluded, if not everyone can be

classified as test positive or test negative, because the frequenci-

es of the different categories are an important indicator for the

usefulness of the test.

If the results are merely excluded, the estimators for sensitivity

and specificity can be biased. This has been investigated metho-

dologically in the literature, e. g. in References [52–54].

qFigure 5 illustrates this phenomenon based on the previously

published data by Ramos et al. [55]. Here, the value of the inter-

feron gamma release assay (IGRA) for the diagnosis of tubercu-

losis was examined. In our eyes, the data were reported comple-

tely and analyzed correctly. The complete data are shown in

qFigure 5a. If indeterminate and invalid test results are assig-

ned to the least favorable category (qFigure 5b), sensitivity is

estimated by 27/71 = 38.00 %, and specificity is 238/302 = 

78.81 %. In contrast, if the missing values are ignored

(qFigure 5c), the estimates for sensitivity and specificity are

27/67 = 40.30 % and 238/280 = 85.00 %, respectively. This exemp-

lifies substantial differences in the estimates. It should be noted

that in this example, only about 7 % of the values are missing,

whereas values of up to 40 % are found in the literature [56].

Figure 4. Number of patients depending on free thyroxine (ng per 100 ml)
for 105 patients with thyrotoxicosis according to [50]. The dotted line gives
the upper reference limit of the test.

n

Thyroxid concentration (ng/100ml)

14
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Figure 5. Missing data in the example by Ramos et al. [55] on the interferon
gamma release assay to diagnose tuberculosis. a) complete data, b) assig-
ning indeterminate and invalid test results to the less favorable category, c)
ignoring missing values.

a Reference standard

Index test Positive Negative

Positive 27 42

indeterminate
and invalid test 

4 22

b Reference standard

Positive Negative

27 42

4 22

c Reference standard

Positive Negative

27 42

Negative 40 238 40 238 40 238
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Two studies systematically investigated the effect of excluding

test results that are not interpretable [32]. However, neither stu-

dy indicates the direction and size of the possible bias [57, 58].

We finally remark that ambiguous test results might have their

own diagnostic value or might hint at another disease [59].

Post hoc definition of the threshold
Instead of a positive or negative test result, such as mutation

present or absent, many molecular biomarkers yield a quantita-

tive test result. From this, a suspicious or unsuspicious result is

defined using a threshold that is usually determined by refe-

rence or norm values. If the threshold is determined using the

data of the current study, it is mostly defined to somehow opti-

mize sensitivity and/or specificity. This generally results in an

overestimation of the diagnostic accuracy of about 30 %

(qFigure 1). Thus, it is crucial to define the threshold or, if mul-

tiple biomarkers are used, the multi-marker rule prior to the

study.

Coefficient of variation and sample size estimation
▼
In the planning stage of a study, a central question concerns the

sample size that is required to detect differences in the biomar-

ker means between two groups. Obviously, these depend on the

precision of the biomarker measurements as well as on the dif-

ference between the groups. Specifically, the precision is ex-

pressed by the coefficient of variation (CV) v = σ/μ which is the

relative variation of the biomarker measurements. Precise tests

have a CV of less than 10 % = 0.1. In this context, the difference is

expressed by the fold change f = μ2/μ1 or 100 × f. This is interpre-

ted as the factor or the percent by which the mean biomarker

values in group 2 differ from the mean biomarker values in

group 1. For instance, if the mean values of the biomarker in

group 2 are doubled compared with the mean values in group 1,

the fold change equals 2.

Assuming that the two groups are of equal size, the required

sample size to detect a difference between the groups with a

power of 90 % at the usual significance level of 5 % can be appro-

ximated by

per group. The appendix gives the derivation of this formula

from the standard sample size formula for mean differences.

qEquation (1) shows that the sample sizes increases quadrati-

cally with the CV. This means that a fourfold sample size is re-

quired if the CV is doubled due to imprecise measurements. This

quadratic relationship between sample size and CV is depicted

in qFigure 6 for difference fold change values.

This relationship can be utilized in a number of applications in

the laboratory, which is exemplified in the following.

For an experiment with gene expression chips, qFigure 7 illus-

trates that the CV decreases considerably with increasing ex-

pression strength. For example, for expressions above the detec-

tion threshold (4.5), the CV approximates 4.5 %. In contrast, for

strongly expressed transcripts (normalized expression of 11 and

greater), the CV is smaller by a factor of 2 to 4. Hence, if there

are two transcripts with different expression levels for a valida-

tion, the transcript with the lower CV should be preferred.

Another example is the dependence of the precision of high per-

formance liquid chromatography (HPLC) on the time constant

(qFigure 8). At a time constant of 0.5 sec, the CV approximates

20 %. At 2 sec, though, the CV decreases to less than 5 %. In this

example, the difference in the variability amounts to a factor of

about 4, meaning that for a measurement at 0.5 sec, about 16

times as many probands would have to be excluded in the study

compared with a measurement at 2 seconds. It is certainly es-

sential to understand the measurement technology in detail. It

might well be possible that measuring at 2 sec in HPLC leads to

the measurement of different analytes so that the value of the

target analyte is biased. If the signals are very weak, a long mea-

surement period also accumulates more noise than a short

Equation (1)

Figure 6 Required sample size n per group to detect a given fold change f
depending on the coefficient of variation (CV). The required sample sizes
increases quadratically with the CV.
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Figure 7. Coefficient of variation (CV) depending on the signal intensity
of technical replicates in a gene expression study using the u133a 2.0 mi-
croarray by Affymetrix. The normalized expression values are given in in-
tervals of a unit. The CV is shown as box plot with median, quartiles, and
smallest and largest non-outlier.
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measurement period. Therefore, the signal-to-noise ratio de-

pends strongly on the measurement period, especially in weak

signals.

Discussion
▼
A publication in the Journal of the American Medical Associati-

on in 1995 already stressed the importance of research on diag-

nostic methods [60]. In their review, the authors considered 112

publications on diagnostic tests that had been published in four

important medical journals between 1978 and 1993. In total,

80 % of the publications were methodologically flawed leading

to relevant biases in the results [61].

More recently, in 2009, similarly sobering conclusions were

drawn by Fontela et al. [25] in a study on the quality of molecu-

lar diagnostic studies for tuberculosis, HIV, and malaria. They

identified 90 articles that used a commercial test kit and ful-

filled their inclusion criteria. None of these publications was

flawless. For instance, only 10 % of the articles adequately descri-

bed the reference standard, and only 16 % of the studies reported

a blinded follow-up.

Moreover, Fontela et al. [25] confirmed previous findings by

concluding that the reporting quality of diagnostic studies was

low [26, 59, 62]. However, deficits in the reporting quality could

easily be avoided by completely adhering to the STARD recom-

mendation [24], although the adoption of this STARD standard

by researchers could be accelerated [63, 64].

Considering the fundamental principles for diagnostic studies in

planning, performing and analyzing a study as well as subse-

quent publishing according to usual recommendations, such as

STARD has the potential to considerably improve the current si-

tuation.

Appendix
▼
The starting point is the following standard formula to calculate

the required sample size per group if two equally sized groups

are being compared:

Here, α is the significance level which is usually set to 0.05, and

1 – β is the statistical power, usually 80 %, 90 % or 95 %. μ1 and μ2

denote the average biomarker values in the two groups, and s is

the variation of the biomarker measurement in a single pro-

band. For simplicity, we set 1 – β  =  0.9 so that using the values of

the normal distribution we obtain (z1 – α/2 + z1 – β)2  =  10,5074

≈10. Accordingly, qEquation 2 can be simplified to

This is the sample size that is required per group to detect a dif-

ference in average biomarker values in both groups at a signifi-

cance level of 5 % with a power of about 90 %.

Instead of using the difference in mean values μ1 – μ2 and the

standard deviation σ, in the context of biomarkers the effect is

preferably described by the fold change f  =  μ2/μ1 and the coef-

ficient of variation (CV) v  =  σ/μ. Using these parameters,

qEquation 3 can be re-formulated by
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Challenges in planning and conducting diagnostic 
studies with molecular biomarkers
▼
Biomarkers are of increasing importance for personalized medi-

cine in many areas of application, such as diagnosis, prognosis,

or the selection of targeted therapies. In many molecular bio-

marker studies, intensity values are obtained from large scale

–omics experiments. These intensity values, such as protein

concentrations, are often compared between at least two groups

of subjects to determine the diagnostic ability of the molecular

biomarker. Various prospective or retrospective study designs

are available for molecular biomarker studies, and the biomark-

er used may be univariate or even consist in a multimarker rule.

In this work, several challenges are discussed for the planning

and conduct of biomarker studies. The phases of diagnostic bio-

marker studies are closely related to levels of evidence in diag-

nosis, and they are therefore discussed upfront. Different study

designs for molecular biomarker studies are discussed, and they

primarily differ in the way subjects are selected. Using two sys-

tematic reviews from the literature, common sources of bias of

molecular diagnostic studies are illustrated. The extreme selec-

tion of patients and controls and verification bias are specifical-

ly discussed. The pre-analytical and technical variability of bio-

marker measurements is usually expressed in terms of the coef-

ficient of variation, and is of great importance for subsequent

validation studies for molecular biomarkers. It is finally shown

that the required sample size for biomarker validation quadrati-

cally increases with the coefficient of variation, and the effect is

illustrated using real data from different laboratory technolo-

gies.
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