Synthesis 2014; 46(16): 2099-2121
DOI: 10.1055/s-0033-1341247
review
© Georg Thieme Verlag Stuttgart · New York

Diversity-Oriented Asymmetric Synthesis

Subhabrata Sen*
Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207, India   Email: subhabrata.sen@snu.edu.in
,
Ganesh Prabhu
Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207, India   Email: subhabrata.sen@snu.edu.in
,
Chandramohan Bathula
Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207, India   Email: subhabrata.sen@snu.edu.in
,
Santanu Hati
Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207, India   Email: subhabrata.sen@snu.edu.in
› Author Affiliations
Further Information

Publication History

Received: 12 February 2014
Accepted after revision: 02 April 2014

Publication Date:
30 July 2014 (online)


Dedicated to Dr. Michael Harmata.

Abstract

The application of small molecules to modulate proteins by direct interactions has evolved as a powerful tool for the study of complex biological systems. Conventional genetic approaches have examined biological systems by generating random mutations which were then screened in search of a precise cellular phenotype. Analogous to the genetic approach, large random collections of small molecules can be used to elucidate the roles of specific proteins in many biological pathways. The crux of this ‘chemical genetic’ approach is the design and synthesis of libraries of compounds which span large tracts of biologically relevant chemical space. Diversity-oriented asymmetric synthesis (DOAS) is an exceptional methodology for preparing structurally and stereochemically diverse small molecule libraries which show a greater variety not only in their physiochemical properties but also in their biological activities. Herein, we describe some of the most effective strategies that have been used in asymmetric diversity-oriented synthesis library design and preparation.

1 Introduction

2 Philosophy of DOAS

3 Stoichiometric Reactions

3.1 DOAS with Chiral Auxiliaries

3.2 DOAS with Chiral Templates

3.3 DOAS with Chiral ‘Linchpins’

3.4 DOAS from Natural Products via a Ring-Distortion Strategy

3.5 DOAS via Chiral Reactions

4 DOAS towards Peptidomimetics

5 Catalytic Reactions

6 Conclusion

 
  • References

  • 1 Schreiber SL. Chem. Eng. News 2003; 81: 51
  • 2 Stockwell BR. Nat. Rev. Genet. 2000; 1: 116
  • 3 Nelson AL, Dhimolea E, Teichert JM. Nat. Rev. Drug Discovery 2010; 9: 767
  • 4 O’Connor CJ, Laraia L, Spring DR. Chem. Soc. Rev. 2011; 40: 4332
  • 5 Lehar J, Stockwell BR, Giaever G, Nislow G. Nat. Chem. Biol. 2008; 4: 674
  • 6 Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW. J. Comb. Chem. 2008; 10: 345
  • 7 Dobson CM. Nature 2004; 432: 824
    • 8a Galloway WR. J. D, Isidro-Llobet A, Spring DR. Nat. Commun. 2010; 1: 80
    • 8b Moura-Letts G, DiBlasi CM, Bauer RA, Tan DS. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6745
  • 9 Barjau J, Schnakenburg G, Waldvogel SR. Angew. Chem. Int. Ed. 2011; 50: 1415
  • 10 Surakanti R, Sanivarapu S, Thulluri C, Iyer PS, Tangirala RS, Gundla R, Addepally U, Murthy YL. N, Velide L, Sen S. Chem. Asian J. 2013; 8: 1168
  • 11 Spandl RJ, Spring DR. Org. Biomol. Chem. 2008; 6: 1149
  • 12 Rask-Andersen M, Almén MS, Schiöth HB. Nat. Rev. Drug Discovery 2011; 10: 579
  • 13 Ng PY, Tang Y, Knosp WM, Stadler HS, Shaw JT. Angew. Chem. Int. Ed. 2007; 46: 5352
  • 14 Spring DR. Org. Biomol. Chem. 2003; 1: 3867
  • 15 Tan DS. Nat. Chem. Biol. 2005; 1: 74
  • 16 Overington JP, Al-Lazikani B, Hopkins AL. Nat. Rev. Drug Discovery 2006; 5: 993
  • 17 Hung AH, Ramek A, Wang Y, Kaya T, Wilson A, Clemons PA, Young DW. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6799
  • 18 Congreve M, Chessari G, Tisi D, Woodhead AJ. J. Med. Chem. 2008; 51: 3661
  • 19 Murray CW, Rees DC. Nat. Chem. 2009; 1: 187
  • 20 Hajduk PJ, Galloway WR. J. D, Spring DR. Nature 2011; 470: 42
  • 21 Ritchie TJ, Macdonald SJ. F. Drug Discovery Today 2009; 14: 1011
  • 22 Spiegel DA, Schroeder FC, Duvall JR, Schreiber SL. J. Am. Chem. Soc. 2006; 128: 14766
  • 23 Nielsen TE, Schreiber SL. Angew. Chem. Int. Ed. 2008; 47: 48
  • 24 Congreve M, Carr R, Murray C, Jhoti H. Drug Discovery Today 2003; 8: 876
  • 25 Sauer WH. B, Schwarz MK. J. Chem. Inf. Comput. Sci. 2003; 43: 987
  • 26 Irwin JJ, Shoichet BK. J. Chem. Inf. Model. 2005; 45: 177
  • 27 Carr RA. E, Congreve M, Murray CW, Rees DC. Drug Discovery Today 2005; 10: 987
  • 28 Damerla VS. B, Tulluri C, Gundla R, Naviri L, Adepally U, Iyer PS, Murthy YL. N, Prabhakar N, Sen S. Chem. Asian J. 2012; 7: 2351
  • 29 Sen S, Kamma SR, Potti VR, Murthy YL. N, Chaudhury AB. Tetrahedron Lett. 2011; 52: 5585
    • 30a Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B. J. Org. Chem. 1991; 56: 6527
    • 30b Cui CB, Kakeya H, Osada H. J. Antibiot. 1996; 49: 832
    • 30c Carling RW, Leeson PD, Moseley AM, Baker R, Foster AC, Gromwood S, Kemp JA, Marshall GR. J. Med. Chem. 1992; 35: 1942
    • 30d Leeson PD, Carling RW, Moore KW, Moseley AM, Smith JD, Stevenson G, Chan T, Baker R, Foster AC, Gromwood S, Kemp JA, Marshall GR, Hoosteen K. J. Med. Chem. 1992; 35: 1954
    • 30e Verbitski SM, Mayne CL, Davis CL, Davis RA, Cencepcion G, Ireland CM. J. Org. Chem. 2002; 67: 7124
    • 31a GVK Biosciences Pvt. Ltd. proprietary database.
    • 31b Stable three-dimensional structures of all compounds were used to calculate their physicochemical properties, such as molecular weight, number of hydrogen-bond donors (HBD), number of hydrogen-bond acceptors (HBA), AlogP, log D and polar surface area (PSA); these values were calculated by using Discovery Studio 3.1 (Accelrys Inc.).
  • 32 SYBYL 8.0. Tripos Associates; St. Louis, MO: 2008
    • 33a Ertl P, Rohde B, Selzer P. J. Med. Chem. 2000; 43: 3714
    • 33b Ertl P. Polar Surface Area . In Molecular Drug Properties . Mannhold R. Wiley-VCH; Weinheim: 2007: 111
  • 34 Mosmann T. J. Immunol. Methods 1983; 65: 55
  • 35 Sen S, Kamma SR, Gundla R, Adepally U, Kuncha S, Thirnathi S, Prasad UV. RSC Adv. 2013; 3: 2404
  • 36 Rees DC, Congreve M, Murray CW, Carr R. Nat. Rev. Drug Discovery 2004; 3: 660
    • 37a Albrecht S, Adam J.-M, Bromberger U, Diodone R, Fettes A, Fischer R, Goeckel V, Hildbrand S, Moine G, Weber M. Org. Process Res. Dev. 2011; 15: 503
    • 37b Böhringer M, Fischer H, Hennig M, Hunziker D, Huwyler J, Kuhn B, Loffler BM, Lubbers T, Mattei P, Narquizian R, Sebokova E, Sprecher U, Wessel HP. Bioorg. Med. Chem. Lett. 2010; 20: 1106
    • 37c Bohringer M, Kuhn B, Lubbers T, Mattei P, Narquizian R, Wessel HP (F. Hoffmann-La Roche AG) U.S. Patent Appl. 2004/0259902, 2004
    • 38a Katz CE, Aube J. J. Am. Chem. Soc. 2003; 125: 13948
    • 38b Kenji M. Tetrahedron: Asymmetry 2005; 16: 685
    • 38c Kim M.-A, Kim JY, Song K.-S, Kim J, Lee J. Tetrahedron 2007; 63: 12845
    • 38d Evans DA, Britton TC, Dorowand RL, Dellaria JF. Tetrahedron 1988; 44: 5525
  • 39 Martínez-Montero S, Fernández S, Sanghvi YS, Chattopadhyaya J, Ganesan M, Ramesh NG, Gotor V, Ferrero M. J. Org. Chem. 2012; 77: 4671
  • 40 Kumar V, Ramesh NG. Tetrahedron 2006; 62: 1877
    • 41a Wong C.-H, Provencher L, Porco JA. Jr, Jung S.-H, Wang Y.-F, Chen L, Wang R, Steensma DH. J. Org. Chem. 1995; 60: 1492
    • 41b Nuesca ZM, Nair V. Tetrahedron Lett. 1994; 35: 2485
  • 42 Jereb M, Vrazic D, Zupan M. Tetrahedron 2011; 67: 1355
    • 43a Rodríguez-Perez T, Fernández S, Sanghvi YS, Detorio D, Schinazi R, Gotor V, Ferrero M. Bioconjugate Chem. 2010; 21: 2239
    • 43b Martínez-Montero S, Fernández S, Sanghvi YS, Gotor V, Ferrero M. J. Org. Chem. 2010; 75: 6605
    • 43c Martínez-Montero S, Fernández S, Sanghvi YS, Wen K, Gotor V, Ferrero M. Eur. J. Org. Chem. 2009; 3265
    • 43d Díaz-Rodríguez A, Sanghvi YS, Fernández S, Schinazi R, Theodorakis E, Ferrero M, Gotor V. Org. Biomol. Chem. 2009; 7: 1415
    • 43e Ferrero M, Gotor V. Chem. Rev. 2000; 100: 4319
    • 43f Ferrero M, Gotor V. Monatsh. Chem. 2000; 131: 585
    • 44a Aravind A, Kumar PS, Sankar MG, Baskaran S. Eur. J. Org. Chem. 2011; 6980
    • 44b Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Drug Discovery Today 2011; 16: 107
    • 44c Winchester BG. Tetrahedron: Asymmetry 2009; 20: 645
    • 44d Iminosugars: From synthesis to therapeutic applications . Compain P, Martin OR. Wiley-VCH; Weinheim: 2007
    • 44e Watson AA, Fleet GW. J, Asano N, Molyneux RJ, Nash RJ. Phytochemistry 2001; 56: 265
  • 45 Aravind A, Sankar MG, Varghese B, Baskaran S. J. Org. Chem. 2009; 74: 2858

    • For reductive cleavage, see:
    • 46a Aravind A, Baskaran S. Tetrahedron Lett. 2005; 46: 743
    • 46b Balakumar V, Aravind A, Baskaran S. Synlett 2004; 647
    • 46c Kumar PS, Baskaran S. Tetrahedron Lett. 2009; 50: 3489

    • For oxidative cleavage, see:
    • 46d Aravind A, Mohanty SK, Pratap TV, Baskaran S. Tetrahedron Lett. 2005; 46: 2965
    • 46e Kumar PS, Aravind A, Baskaran S. Tetrahedron Lett. 2007; 48: 1175
    • 46f Kumar PS, Banerjee A, Baskaran S. Angew. Chem. Int. Ed. 2010; 49: 804

    • For hydrolysis, see:
    • 46g Kumar PS, Kishore GD. K, Baskaran S. Eur. J. Org. Chem. 2008; 6063

    • For epoxides, see:
    • 46h Reddy LV. R, Roy AD, Roy R, Shaw AK. Chem. Commun. 2006; 3444
  • 47 Reddy PG, Pratap TV, Kumar GD. K, Mohanty SK, Baskaran S. Eur. J. Org. Chem. 2002; 3740
    • 48a Smith III AB, Wuest WM. Chem. Commun. 2008; 5883
    • 48b Smith III AB, Kim W.-S, Wuest WM. Angew. Chem. Int. Ed. 2008; 47: 7082
    • 48c Smith III AB, Kim W.-S, Tong R. Org. Lett. 2010; 12: 588
    • 48d Smith III AB, Tong R. Org. Lett. 2010; 12: 1260
    • 48e Smith III AB, Kim W.-S. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6787
  • 49 Smith III AB, Han H, Kim W.-S. Org. Lett. 2011; 13: 3328

    • For reviews, see:
    • 50a Laschat S, Dickner T. Synthesis 2000; 1781
    • 50b Weintraub JS, Sabol PM, Kane JM, Borcherding DR. Tetrahedron 2003; 59: 2953
    • 50c Buffat MG. P. Tetrahedron 2004; 60: 1701
    • 50d Cossy J. Chem. Rec. 2005; 5: 70
  • 51 Schlosser M, Strunk S. Tetrahedron Lett. 1984; 25: 741
  • 52 Reich HJ, Sanders AW, Fielder AT, Bevan MJ. J. Am. Chem. Soc. 2002; 124: 13386
  • 53 Corey EJ, Shibata S, Bakshi RK. J. Org. Chem. 1988; 53: 2861
    • 54a Fleming FF, Funk L, Altundas R, Tu Y. J. Org. Chem. 2001; 66: 6502
    • 54b Stork G, Zhao K. Tetrahedron Lett. 1989; 30: 287
    • 55a Singh AK, Bakshi RK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
    • 55b Keck GE, Wager CA, Seel T, Wager TT. J. Org. Chem. 1999; 64: 2172
    • 55c Keck GE, Wager CA. Org. Lett. 2000; 2: 2307

      For reviews, see:
    • 56a Ferreirra F, Botuha C, Chemla F, Perez-Luna A. Chem. Soc. Rev. 2009; 38: 1162
    • 56b Morton D, Stockman RA. Tetrahedron 2006; 62: 8869
    • 56c Zhou P, Chen B.-C, Davis FA. Tetrahedron 2004; 60: 8003
    • 56d Ellman JA. Pure Appl. Chem. 2003; 75: 39
  • 57 Bauer RA, DiBlasi CR, Tan DS. Org. Lett. 2010; 12: 2084
  • 58 Ding C.-H, Chen D.-D, Luo Z.-B, Dai L.-X, Hou X.-L. Synlett 2006; 1272
    • 59a Kuduk SD, Marco CN. D, Pitzenberger SM, Tsou N. Tetrahedron Lett. 2006; 47: 2377
    • 59b Hiroi K, Watanabe T. Heterocycles 2001; 54: 73
  • 60 Schore NE. Org. React. 1991; 40: 1
  • 61 Jang H.-Y, Hughes FW, Gong H, Zhang J, Brodbelt JS, Krische MJ. J. Am. Chem. Soc. 2005; 127: 6174
  • 62 Robinson JE, Baum EW, Fazal AN, Evans PA. J. Am. Chem. Soc. 2002; 124: 8782
  • 63 Diver ST, Giessert AJ. Chem. Rev. 2004; 104: 1317
  • 64 Yamamoto Y, Kinpara K, Saigoku T, Takagishi H, Okuda S, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2005; 127: 605
  • 65 Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
  • 66 DiBlasi CM, Macks DE, Tan DS. Org. Lett. 2005; 7: 1777
  • 67 Zhou A, Rayabarapu D, Hanson PR. Org. Lett. 2009; 11: 531
    • 68a Tanimukai H, Inui M, Harigushi S, Kaneko J. Biochem. Pharmacol. 1965; 14: 961
    • 68b Wroblewski T, Graul A, Castaner J. Drugs Future 1998; 23: 365
    • 68c Rabasseda X, Hopkins SJ. Drugs Today 1994; 30: 557
    • 68d Inagaki M, Tsuri T, Jyoyama H, Ono T, Yamada K, Kobayashi M, Hori Y, Arimura A, Yasui K, Ohno K, Kakudo S, Koizumi K, Suzuki R, Kato M, Kawai S, Matsumoto S. J. Med. Chem. 2000; 43: 2040
    • 68e Valente C, Guedes RC, Moreira R, Iley J, Gut J, Rosental PJ. Bioorg. Med. Chem. Lett. 2006; 16: 4115

    • For an extensive list of biologically active sultams, as well as classical and transition-metal-catalyzed cyclization strategies to obtain sultams, see:
    • 68f Jiménez-Hopkins M, Hanson PR. Org. Lett. 2008; 10: 2223
    • 68g Rolfe A, Young K, Hanson PR. Eur. J. Org. Chem. 2008; 5254
  • 69 The use of A′, B′, C′ and D′ denotes functional group transformation after the functional group pairing event.
  • 70 ‘Click’ chemistry is a chemical philosophy introduced by K. Barry Sharpless in 2001 that describes chemistry tailored to generate substances quickly and reliably by joining small units together; see: Kolb H, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 71 Comer E, Rohan E, Deng L, Porco JA. Org. Lett. 2007; 9: 2123
  • 72 Huigens III RW, Morrison KC, Hicklin RW, Flood TA. Jr, Richter MF, Hergenrother PJ. Nat. Chem. 2013; 5: 195
  • 73 Rodrigues C, Vandenberghe LP, de Oliveira J, Soccol CR. Crit. Rev. Biotechnol. 2012; 32: 263
  • 74 Cross BE. J. Chem. Soc. 1954; 4670
  • 75 Cross BE, Markwell RE. J. Chem. Soc., Perkin Trans. 1 1973; 1476
    • 76a Vogel’s Textbook of Practical Organic Chemistry. 5th ed.; Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PW. G. Prentice Hall; Harlow: 1996: 1073
    • 76b Sánchez-Sancho F, Mann E, Herradón B. Synlett 2000; 509
    • 76c Sauers RR, Ahearn GP. J. Am. Chem. Soc. 1961;  83: 2759
  • 77 Idler DR, Schmidt PJ, Bitners I. Can. J. Biochem. Physiol. 1961; 39: 1653
  • 78 Cinchona Alkaloids in Synthesis and Catalysis . Song CE. Wiley-VCH; Weinheim: 2009: 1-10
  • 79 Hintermann L, Schmitz M, Englert U. Angew. Chem. Int. Ed. 2007; 46: 5164
    • 80a Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
    • 80b Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
    • 80c Rama Raju B, Saikia AK. Molecules 2008; 13: 1942
    • 80d Blunt JW, Copp BR, Hu WP, Munro MH. G, Northcote PT, Prinsep MR. Nat. Prod. Rep. 2009; 26: 170
    • 80e Moilanen SB, Potuzak JS, Tan DS. J. Am. Chem. Soc. 2006; 128: 1792
  • 81 Potuzak JS, Moilanen SB, Tan DS. J. Am. Chem. Soc. 2005; 127: 13796
  • 82 Galaud F, Lubell WD. Biopolymers (Peptide Sci.) 2005; 80: 665
  • 83 Freidinger RM, Veber DF, Perlow DS, Brooks JR, Saperstein R. Science 1980; 210: 656
  • 84 Yu KL, Rajakumar G, Srivastava LK, Mishra RK, Johnson RL. J. Med. Chem. 1988; 31: 1430
  • 85 Atfani M, Wei L, Lubell WD. Org. Lett. 2001; 3: 2965
  • 86 Melendez R, Lubell WD. Tetrahedron 2003; 59: 2581
  • 87 Stavenger RA, Schreiber SL. Angew. Chem. Int. Ed. 2001; 40: 3417
  • 88 Stavenger and Schreiber believe that related aldol reactions of silyl ketene (thio)acetals with resin-bound pyruvate are limited to the current reactions from a diversity point of view.
    • 89a Evans DA, Johnson JS, Olhava EJ. J. Am. Chem. Soc. 2000; 122: 1635
    • 89b Evans DA, Olhava EJ, Johnson JS, Janey JM. Angew. Chem. Int. Ed. 1998; 37: 3372
    • 89c Thorhauge J, Johannsen M, Jørgensen KA. Angew. Chem. Int. Ed. 1998; 37: 2404
    • 90a Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 90b Jørgensen KA, Johannsen M, Yao S, Audrain H, Thorhauge J. Acc. Chem. Res. 1999; 32: 605
    • 91a Tallarico JA, Depew KM, Pelish HE, Westwood NJ, Lindsley CW, Sharir MD, Schreiber SL, Foley MA. J. Comb. Chem. 2001; 3: 312
    • 91b Blackwell HE, Perez L, Stavenger RA, Tallarico JA, Cope-Eatough E, Foley MA, Schreiber SL. Chem. Biol. 2001; 8: 1167
    • 92a Macbeath G, Koehler AN, Schreiber SL. J. Am. Chem. Soc. 1999; 121: 7967
    • 92b Hergenrother PJ, Depew KM, Schreiber SL. J. Am. Chem. Soc. 2000; 122: 7849
  • 93 Gerard B, O’Shea MW, Donckele E, Kesavan S, Akella LB, Xu H, Jacobsen EN, Marcaurelle LA. ACS Comb. Sci. 2012; 14: 621
    • 94a Alves JM, Azoia NG, Fortes GA. Tetrahedron 2007; 63: 727
    • 94b Hermitage S, Howard JA. K, Jay D, Pritchard RG, Probert MR, Whiting A. Org. Biomol. Chem. 2004; 2: 2451
    • 94c Borrione E, Prato M, Scorrano G, Stivanello M, Lucchini V. J. Heterocycl. Chem. 1988; 25: 1831
    • 95a Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
    • 95b Hadden M, Nieuwenhuyen M, Potts D, Stevenson PJ, Thompson N. Tetrahedron 2001; 57: 5615
    • 95c Marais W, Holzapfel CW. Synth. Commun. 1998; 28: 3681
    • 95d Kraus GA, Neuenschwander K. J. Org. Chem. 1981; 46: 4791
    • 96a Bagnoli L, Scarponi C, Rossi MG, Testaferri L, Tiecco M. Chem. Eur. J. 2011; 17: 993 ; and references cited therein
    • 96b Concellon JM, Bernard PL, Del Solar V, Garcia-Granda S, Diaz M.-R. Adv. Synth. Catal. 2008; 350: 477
    • 96c Wilkinson MC, Bell R, Landon R, Nikiforov PO, Walzer AJ. Synlett 2006; 2151
    • 96d Tiecco M, Testaferri L, Marini F, Sternativo S, Santi C, Bagnoli L, Temperini A. Tetrahedron: Asymmetry 2003; 14: 1095
    • 96e Fujioka H, Matsunaga N, Kitagawa H, Nagatomi Y, Kondo M, Kita Y. Tetrahedron: Asymmetry 1995; 6: 2117
    • 96f Kim KS, Park II J, Ding P. Tetrahedron Lett. 1998; 39: 6471
    • 96g Wijtmass R, Vink KS. M, Schoemaker EH, VanDelft FL, Blaauw RH, Rutjes PJ. T. Synthesis 2004; 641
    • 96h Dando TM, Perry CM. Drugs 2004; 64: 777
  • 97 Sawant RT, Stevenson J, Odell LR, Arvidsson PI. Tetrahedron: Asymmetry 2013; 24: 134
  • 98 Mao B, Fañanás-Mastral M, Lutz M, Feringa BL. Chem. Eur. J. 2013; 19: 761
  • 99 Bagnoli L, Scarponi C, Rossi MG, Testaferri L, Tiecco M. Chem. Eur. J. 2011; 17: 993
  • 100 List B, Lerner BR. A, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 101 Northrup AB, MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 6798
  • 102 Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ. J. Am. Chem. Soc. 2000; 122: 9939; and references cited therein
    • 103a Lesch B, Braese S. Angew. Chem. Int. Ed. 2004; 43: 115
    • 103b Tietze LF, Spiegl DA, Stecker F, Major J, Raith C, Große C. Chem. Eur. J. 2008; 14: 8956
  • 104 Ramachary DB, Prasad MS, Madhavachary R. Org. Biomol. Chem. 2011; 9: 2715
    • 105a Belot S, Vogt KA, Besnard C, Krause N, Alexakis A. Angew. Chem. Int. Ed. 2009; 48: 8923
    • 105b Rueping M, Merino E, Sugiono E. Adv. Synth. Catal. 2008; 350: 2127
    • 105c Buchgraber P, Snaddon TN, Wirtz C, Mynott R, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2008; 47: 8450
    • 105d Hong B.-C, Kotame P, Liao JH. Org. Biomol. Chem. 2011; 9: 382
    • 105e Enders D, Wang C, Yang X, Raabe G. Adv. Synth. Catal. 2010; 352: 2869
    • 105f Lu D, Li Y, Gong Y. J. Org. Chem. 2010; 75: 6900
    • 106a Sakthivel K, Notz W, Bui T, Barbas III CF. J. Am. Chem. Soc. 2001; 123: 5260
    • 106b Betancort JM, Sakthivel K, Thayumanavan R, Barbas III CF. Tetrahedron Lett. 2001; 42: 4441
    • 106c Betancort JM, Barbas III CF. Org. Lett. 2001; 3: 3737
    • 106d List B, Pojarliev P, Martin HJ. Org. Lett. 2001; 3: 2423
    • 106e Mase N, Thayumanavan R, Tanaka F, Barbas III CF. Org. Lett. 2004; 6: 2527
    • 106f Betancort JM, Sakthivel K, Thayumanavan R, Tanaka F, Barbas III CF. Synthesis 2004; 1509
    • 106g Cobb AJ. A, Longbottom DA, Shaw DM, Ley SV. Chem. Commun. 2004; 1808
    • 106h Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 106i Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature 2006; 441: 861
    • 106j García-García P, Ladépêche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719
    • 106k Dinér P, Kjærsgaard A, Lie MA, Jørgensen KA. Chem. Eur. J. 2008; 14: 122
    • 106l Zhu X, Tanaka F, Lerner RA, Barbas III CF, Wilson IA. J. Am. Chem. Soc. 2009; 131: 18206
    • 106m Uehara H, Barbas III CF. Angew. Chem. Int. Ed. 2009; 48: 9848
    • 106n Maya V, Singh VK. Org. Lett. 2007; 9: 1117
    • 106o Moorthy JN, Saha S. Eur. J. Org. Chem. 2010; 6359
  • 107 Cabrera S, Reyes E, Alemán J, Milelli A, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2008; 130: 12031
  • 108 Huang Y, Walji AM, Larsen CH, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 15051
  • 109 Burke MD, Schreiber SL. Angew. Chem. Int. Ed. 2004; 43: 46
    • 110a Fensome A, Adams WR, Adams AL, Berrodin TJ, Cohen J, Huselton C, Illenberger A, Kern JC, Hudak VA, Marella MA, Melenski EG, McComas CC, Mugford CA, Slayden OD, Yudt M, Zhang Z, Zhang P, Zhu Y, Winneker RC, Wrobel JE. J. Med. Chem. 2008; 51: 1861
    • 110b Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 3933
    • 110c Bond RF, Boeyens JC. A, Holzapfel CW, Steyn PS. J. Chem. Soc., Perkin Trans. 1 1979; 1751
    • 110d Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM. Angew. Chem. Int. Ed. 2008; 47: 3573
    • 110e Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K, Kobayashi J.i. J. Org. Chem. 2005; 70: 9430
    • 111a Tan B, Candeias NR, Barbas III CF. J. Am. Chem. Soc. 2011; 133: 4672
    • 111b Zhong F, Han X, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2011; 50: 7837
  • 112 Albertshofer K, Anderson KE, Barbas III CF. Org. Lett. 2012; 14: 1834
  • 113 Tan B, Candeias NR, Barbas III CF. Nat. Chem. 2011; 3: 473
  • 114 Albertshofer K, Anderson KE, Barbas III CF. Org. Lett. 2012; 14: 5968
  • 115 Tan B, Torres GH, Barbas III CF. J. Am. Chem. Soc. 2011; 133: 12354
  • 116 Tan B, Zeng X, Leong WW. Y, Shi Z, Barbas III CF, Zhong G. Chem. Eur. J. 2012; 18: 63