Synlett 2014; 25(09): 1275-1278
DOI: 10.1055/s-0033-1341124
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Oxidative Conversion of Alcohols into Nitriles by Using a TEMPO/PhI(OAc)2/NH4OAc System

Jean-Michel Vatèle*
Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Equipe SURCOOF, bât. Raulin, 43, Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France   Fax: +33(4)72431214   Email: vatele@univ-lyon1.fr
› Author Affiliations
Further Information

Publication History

Received: 03 March 2014

Accepted: 13 March 2014

Publication Date:
03 April 2014 (online)


Dedicated to the memory of Professor Serge David

Abstract

A direct conversion of alcohols into nitriles with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), iodosobenzene diacetate, and ammonium acetate as a nitrogen source is reported. This transformation, which proceeds through an oxidation–imination–aldimine oxidation sequence in situ, has been applied to a range of aliphatic, benzylic, heteroaromatic, allylic, and propargyl alcohols. Highly chemoselective ammoxidation of primary alcohols in the presence of secondary alcohols was also achieved.

 
  • References and Notes

    • 1a Friedrick K, Wallensfels K. The Chemistry of the Cyano Group . Rappoport Z. Wiley-Interscience; New York: 1970
    • 1b Larock RC. Comprehensive Organic Transformations . VCH; New York: 1989: 819
    • 1c Murahashi S.-I. Science of Synthesis 2004; 19: 345
    • 1d Collier SJ, Langer P. Science of Synthesis 2004; 19: 403
    • 2a Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds . Patai S, Rappoport Z. Wiley; New York: 1983
    • 2b Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
  • 3 Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 4a Mai K, Patil G. Tetrahedron Lett. 1986; 27: 2203
    • 4b Ishihara K, Furaya H, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2983
    • 4c Kuo CW, Zhu JL, Wu JD, Chu CM, Yao CF, Shia KS. Chem. Commun. 2007; 301
    • 4d Nagashima K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Chem. Commun. 2010; 46: 8243
    • 4e Enthaler S. Chem. Eur. J. 2011; 17: 9316
    • 5a Foley HG, Dalton DR. J. Chem. Soc., Chem. Commun. 1973; 628
    • 5b Rogic MM, Peppen JF. V, Klein KP, Demmin TR. J. Org. Chem. 1974; 39: 3424
    • 5c Chiou S, Hoque AK. M. M, Shine HJ. J. Org. Chem. 1990; 55: 3227
    • 5d Yang SH, Chang S. Org. Lett. 2001; 3: 4209
    • 5e Choi E, Lee C, Na Y, Chang S. Org. Lett. 2002; 4: 2369
    • 5f Hosseini-Sarvari M. Synthesis 2005; 787
    • 5g Yamaguchi K, Fujiwara H, Ogasawara Y, Kotani M, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 3922
    • 6a Bailey A, James BB. Chem. Commun. 1996; 2343
    • 6b Mori K, Yamaguchi T, Mizugaki T, Ebitani K, Kaneda K. Chem. Commun. 2001; 461
    • 6c Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2003; 42: 1480
    • 6d Kotani M, Koike T, Yamaguchi K, Mizuno N. Green Chem. 2006; 8: 735
    • 6e Reddy KR, Maheswari CU, Venkateshwar M, Prashanti S, Kantam ML. Tetrahedron Lett. 2009; 50: 2050
    • 6f Zhang Y, Xu K, Chen X, Hu T, Yu Y, Zhang J, Hung J. Catal. Commun. 2010; 11: 951
    • 6g Zhu C, Sun C, Wei Y. Synthesis 2010; 4235
    • 6h Kim J, Stahl SS. ACS Catal. 2013; 3: 1652
    • 7a Erman MB, Snow JW, Williams MJ. Tetrahedron Lett. 2000; 41: 6749
    • 7b Lai G, Bhamare NK, Anderson WK. Synlett 2001; 230
    • 7c Talukdar S, Hsu JL, Tchu TC, Fang JM. Tetrahedron Lett. 2001; 42: 1103
    • 7d Bandgar BP, Makone SS. Synlett 2003; 262
    • 7e Carmeli M, Shefer N, Rozen S. Tetrahedron Lett. 2006; 47: 8969
    • 7f Arote ND, Bhalerao DS, Akamanchi KG. Tetrahedron Lett. 2007; 48: 3651
    • 7g Telvekar VN, Patel KN, Kundaikar HS, Chaudari HK. Tetrahedron Lett. 2008; 49: 2213
    • 7h Bag S, Tawari NR, Degani MS. ARKIVOC 2009; (xiv): 118
    • 7i Zhu Y.-Z, Cai C. Monatsh. Chem. 2010; 141: 637
    • 7j Telvekar VN, Rane RA, Namjoshi TV. Synth. Commun. 2010; 40: 494
    • 7k Zhu Y.-Z, Zhang X.-Q, Liu F, Gu H.-M, Zhu H.-L. Synth. Commun. 2013; 43: 2943
    • 8a Yamazaki S, Yamazaki Y. Chem. Lett. 1990; 571
    • 8b McAllister GD, Wilfried CD, Taylor RJ. K. Synlett 2002; 1291
    • 8c Chen F.-E, Li Y.-Y, Xu M, Jia H.-Q. Synthesis 2002; 1804
    • 8d Togo H, Iida S. Tetrahedron 2007; 63: 8274
    • 8e Oishi T, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2009; 48: 6286
    • 8f Oishi T, Yamaguchi K, Mizuno N. Top. Catal. 2010; 53: 479
    • 8g Veisi N. Synthesis 2010; 2631
    • 8h Zolfigol MA, Hajjami M, Ghorbani-Choghamarani A. Bull. Korean Chem. Soc. 2011; 32: 4191
    • 8i Ghorbani-Choghamarani A, Zolfigol MA, Hajjami M, Sardari S. Synth. Commun. 2013; 43: 52
    • 8j Yin W, Wang C, Huang Y. Org. Lett. 2013; 15: 1850
    • 8k Dornan LM, Cao Q, Flanagan JC. A, Crawford JJ, Cook MJ, Muldoon MJ. J. Chem. Soc., Chem. Commun. 2013; 49: 6030
    • 8l Tao C, Liu F, Zhu Y, Liu W, Cao Z. Org. Biomol. Chem. 2013; 11: 3349
    • 8m Shimojo H, Moriyama K, Togo H. Synthesis 2013; 45: 2155
    • 9a Ren Y.-M, Zhu Y.-Z, Cai C. J. Chem. Res. 2008; 18
    • 9b Yadav DK. T, Bhanage BM. Eur. J. Org. Chem. 2013; 5106
  • 11 All known compounds have physical data in accordance with those described in the literature.
  • 12 Oxidative Conversion of Alcohols into Nitriles; General Procedure: To a solution of alcohol (1 mmol) in MeCN–H2O (9:1, 3 mL) were successively added TEMPO (7.8 mg, 5 mol%), NH4OAc (0.308 g, 4 equiv), and PhI(OAc)2 (0.708 g, 2.2 equiv). The suspension was stirred at room temperature (progress of the reaction was monitored by TLC) for the reaction time indicated in Table 2. The resultant clear two-phase reaction mixture was concentrated, diluted with H2O and Et2O, and the organic layer was dried (Na2SO4), filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography (PE–Et2O or PE–CH2Cl2) to give 2.(Trityloxy)pentanenitrile (2d): Eluent: PE–Et2O (95:5). Yield: 92%; solid; mp 72–74 °C (hexane). 1H NMR (300 MHz, C6D6): δ = 7.56–7.46 (m, 6 H), 7.22–7.11 (m, 6 H), 7.11–7.02 (m, 3 H), 2.92 (t, J = 6.1 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 2 H), 1.37–1.28 (m, 2 H), 1.17–1.06 (m, 2 H). 13C NMR (75 MHz, C6D6): δ = 144.7 (3C), 129.0 (6C), 128.1 (6C), 127.3 (3C), 119.3, 86.9, 62.6, 29.0, 22.6, 16.5. HRMS (ESI): m/z [M + Na]+ calcd for C24H23NNaO: 364.1672; found: 364.1663.5-[(tert-Butyldimethylsilyl)oxy]pentanenitrile (2e): Eluent: PE–Et2O (9:1); Yield: 97%; liquid. 1H NMR (300 MHz, C6D6): δ = 3.27 (t, J = 5.7 Hz, 2 H), 1.54 (t, J = 6.7 Hz, 2 H), 1.32–1.06 (m, 4 H), 0.91 (m, 9 H), –0.02 (m, 6 H). 13C NMR (75 MHz, C6D6): δ = 119.4, 62.0, 31.6, 26.1 (3 C), 22.4, 18.4, 16.5, –5.3 (2 C). HRMS (ESI): m/z [M + Na]+ calcd for C11H23NNaOSi: 236.1441; found: 236.1435.(Z)-4-(Benzyloxy)but-2-enenitrile (2r): Eluent: PE–Et2O (4:1). Yield: 92%; liquid. 1H NMR (300 MHz, C6D6): δ = 7.22–7.02 (m, 5 H), 5.82 (dt, J = 11.3, 6.0 Hz, 1 H), 4.56 (dt, J = 11.3, 1.8 Hz, 1 H), 4.10 (s, 2 H), 3.86 (dd, J = 6.0, 1.8 Hz, 2 H). 13C NMR (75 MHz, C6D6): δ = 150.2, 138.1, 128.6 (2 C), 128.0, 127.97 (2 C), 115.3, 100.3, 72.9, 68.2. HRMS (ESI): m/z [M + Na]+ calcd for C11H11NNaO: 196.0733; found: 196.0731.10-Hydroxyundecanenitrile (2t): Eluent: PE–Et2O (1:2). Yield: 84%; liquid. 1H NMR (300 MHz, CDCl3): δ = 3.79–3.64 (m, 1 H), 2.28 (t, J = 7.1 Hz, 2 H), 2.11 (s, 1 H), 1.64–1.53 (m, 2 H), 1.45–1.18 (m, 12 H), 1.12 (d, J = 6.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 119.7, 67.7, 39.0, 29.2, 29.0, 28.44, 28.38, 25.45, 25.1, 23.2, 16.9. HRMS (ESI): m/z [M + Na]+ calcd for C11H21NNaO: 206.1515; found: 206.1510.10-Oxoundecanenitrile (2t′): Eluent: PE–Et2O (1:2). Yield 8%; liquid. 1H NMR (400 MHz, CDCl3): δ = 2.41 (t, J = 7.4 Hz, 2 H), 2.36–2.28 (m, 2 H), 2.12 (s, 3 H), 1.73–1.12 (m, 12 H). 13C NMR (101 MHz, CDCl3): δ = 209.1, 119.75, 43.6, 29.8, 29.0, 28.9, 28.5 (2 C), 25.3, 23.6, 17.05. HRMS (ESI): m/z [M + Na]+ calcd for C11H19NNaO: 204.1359; found: 204.1355.3-Hydroxy-2,2,4-trimethylpentanenitrile (2u): Eluent: PE–Et2O (1.5:1). Yield: 87%; oil. 1H NMR (300 MHz, CDCl3): δ = 3.20 (d, J = 3.2 Hz, 1 H), 2.44 (s, 1 H), 2.04–1.9 (m, 1 H), 1.39 (s, 3 H), 1.30 (s, 3 H), 1.02 (s, 3 H), 1.00 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 124.3, 79.9, 37.0, 29.9, 24.7, 23.7, 21.6, 15.4. HRMS (ESI): m/z [M + Na]+ calcd for C8H15NNaO: 164.1046; found: 164.1039.Methyl 2,3-Di-O-benzyl-α-d-glucopyranosiduronitrile (2v): Eluent: PE–Et2O (2:1). Yield: 77%; glass; [α]D 20 +76.4 (c 1.3, MeOH). 1H NMR (300 MHz, CDCl3): δ = 7.43–7.30 (m, 10 H), 4.93 (d, J = 11.3 Hz, 1 H), 4.79 (d, J = 7.7 Hz, 1 H), 4.75 (d, J = 7.0 Hz, 1 H), 4.64 (d, J = 11.6 Hz, 1 H), 4.60 (d, J = 3.3 Hz, 1 H), 4.36 (d, J = 9.1 Hz, 1 H), 3.74 (t, J = 8.6 Hz, 1 H), 3.67 (t, J = 8.9 Hz, 1 H), 3.48 (dd, J = 3.4, 9 Hz, 1 H), 3.43 (s, 3 H), 3.10 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 138.0, 137.45, 128.53 (2 C), 128.50 (2 C), 128.1 (1 C), 128.03 (2 C), 127.94 (1 C), 127.91 (2 C), 116.8, 98.8, 79.7, 78.2, 75.45, 73.6, 71.35, 61.6, 56.25. HRMS (ESI): m/z [M + Na]+ calcd for C21H23NNaO5: 392.1468; found: 392.1457.