Synlett 2014; 25(6): 831-834
DOI: 10.1055/s-0033-1340831
letter
© Georg Thieme Verlag Stuttgart · New York

A Highly Regioselective Synthesis of N-Acyl-2-acyl(aroyl)indolium Chloride through Palladium-Copper Catalysis Followed by Friedel–Crafts Reaction

Md. Wahab Khan*
Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh   Email: mwkhan@chem.buet.ac.bd
,
Arifa Akther
Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh   Email: mwkhan@chem.buet.ac.bd
,
Md. Shariful Alam
Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh   Email: mwkhan@chem.buet.ac.bd
› Author Affiliations
Further Information

Publication History

Received: 23 November 2013

Accepted after revision: 27 January 2014

Publication Date:
05 March 2014 (online)


Abstract

2-Trimethylsilylethynyl acetanilides, obtained from the palladium-catalyzed reactions of 2-iodoacetanilides with trimethylsilylacetylene, underwent Friedel–Crafts acylation reactions yielding the N-acyl-2-acyl(aroyl)indolium chlorides in good yields.

Supporting Information

 
  • References and Notes

    • 1a Manske RH. F. The Alkaloids . Vol. 1–17. Wiley; New York: 1950
    • 1b Hesse M. Indolalkaloide in Tabellen . Springer; Berlin 1964:
    • 1c Glasby S. Encyclopedia of the Alkaloids . Plenum Press; New York: 1975
    • 1d Gribbe GW In Comprehensive, Heterocyclic Chemistry II . Vol. 2. Katritzky AR, Rees CW, Seriven EF. V. Pergamon Press; Oxford, Uk: 1996: 207
    • 1e Sundberg RJ. Indoles . In Best Synthetic Methods . Academic Press; London: 1996: 1-6
    • 1f Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1g Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 2a Hegedus LS. Angew. Chem. Int. Ed. Engl. 1988; 27: 1113
    • 2b Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970
  • 3 Evans BE, Rittle KE, Bock MG, Dipardo RM, Freidnger RM, Whitter WL, Lundell GF, Veber DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirsfield J. J. Med. Chem. 1988; 31: 2235
  • 4 Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barleuenga S, Mithchell HJ. J. Am. Chem. Soc. 2000; 122: 9939
  • 5 Leneva IA, Russell RJ, Boriskin YS, Hay AJ. Antiviral Res. 2009; 81: 132
  • 6 Reegina GL, Coluccia A, Piscitelli F, Bergamini A, Sinistro A, Cavazza A, Maga G, Samuele A, Zanoli S, Novellino E, Artivo M, Silvertri R. J. Med. Chem. 2007; 50: 5034
  • 7 Prabhu S, Akbar Z, Harris F, Karakoula K, Lea R, Rowther F, Warr T, Snape T. Bioorg. Med. Chem. 2013; 21: 1918
  • 8 Gu Y, Wang X.-m. Tetrahedron Lett. 2009; 50: 763
  • 9 Thansandote P, Hulcoop DG, Langer M, Lautens M. J. Org. Chem. 2009; 74: 1673
  • 10 Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
  • 11 Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry . Elsevier; Oxford: 2007. 2nd ed.
    • 12a Heck RF. Palladium Reagents in Organic Synthesis . Academic Press; London: 1985
    • 12b Heck RF. Org. React. 1982; 27: 345
    • 12c Heck RF. Comprehensive Organic Synthesis . Perganon; Oxford: 1991
    • 12d Stille JK. Angew. Chem. Int. Ed. Engl. 1986; 25: 508
    • 12e Cavies GD. Jr, Hallbug A. Chem. Rev. 1989; 89: 1433
    • 12f Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules. University Science Book; California: 1994
    • 12g Tsuji J. Palladium Reagents and Catalysts . Wiley; Chichester: 1995
    • 13a Zhang T, Negishi E. J. Am. Chem. Soc. 1989; 111: 3454
    • 13b Trost BM, Shih S. J. Am. Chem. Soc. 1993; 115: 12491
    • 13c Ithle NC, Heathcock CH. J. Org. Chem. 1993; 58: 560
    • 13d Larock RC, Doty MJ, Cacchi S. J. Org. Chem. 1993; 58: 5479
    • 13e Trost BM, Tanoury GJ, Lautens M, Chan C, McPherson DJ. J. Am. Chem. Soc. 1994; 116: 4255
    • 13f Ma S, Negishi E.-i. J. Am. Chem. Soc. 1995; 117: 6345
    • 14a Hegdus LS. Angew. Chem. Int. Ed. Engl. 1988; 27: 1113
    • 14b Sakamoto T, Kondo Y, Yamanaka H. Heterocycles 1988; 27: 2225
    • 14c Arcadi A, Cacchi S, Marinelli F. Tetrahedron Lett. 1989; 30: 2581
    • 14d Tidwell JH, Senn DR, Buchwald SL. J. Am. Chem. Soc. 1991; 113: 4685
    • 14e Larock RC, Berrios-Pena NG, Fried CA, Yum EK, Leogn CW. J. Org. Chem. 1993; 58: 4509
    • 14f Liao H.-Y, Cheng CH. J. Org. Chem. 1995; 60: 3711
    • 14g Trost BM, McIntosh MC. J. Am. Chem. Soc. 1995; 117: 7255
    • 14h Arcadi A, Cacchi S, Fabrizi G, Marinelli F, Pacc P. Synlett 1996; 568
    • 14i Negishi E.-i, Coperet C, Ma S, Lion S.-Y, Lire F. Chem. Rev. 1996; 96: 365
    • 14j Cavicchioli M, Decortiat S, Bouyssis D, Gore J, Bahme G. Tetrahedron 1996; 52: 11463
    • 14k Bouyssi D, Cavicchioli M, Balme G. Synlett 1997; 944
    • 15a Larock RC, Yum EK, Doty MJ, Sham KK. C. J. Org. Chem. 1995; 60: 3270
    • 15b Jeschke T, Wensbo D, Annby U, Gronoaitz S, Cohen LA. Tetrahedron Lett. 1993; 34: 6471
    • 15c Larock RC, Yum EK. J. Am. Chem. Soc. 1991; 113: 6689
    • 16a Arcadi A, Marinelli F, Cacchi S. Synthesis 1986; 747
    • 16b Tsuji J. Tetrahedron 1986; 42: 4361
    • 16c Sakamoto T, Kondo Y, Yamanaka H. Heterocycles 1988; 27: 2225
    • 16d Larock RC, Berrios-Pena N, Fried CA. J. Org. Chem. 1991; 56: 2615
  • 17 Comprehensive Heterocyclic Chemistry . Vol. 4; Katritzky AR, Rees CW. Pergamon; Oxford: 1984
  • 18 Akermark B, Eberson L, Jonsson E, Petlersson E. J. Org. Chem. 1975; 40: 1365
  • 19 Hegedus S, Allens GF, Waterman EL. J. Am. Chem. Soc. 1976; 98: 2674
  • 20 Tischler A, Lanza TJ. Tetrahedron Lett. 1986; 27: 1653
  • 21 Mori M, Chiba K, Ban Y. Tetrahedron Lett. 1977; 1037
  • 22 Suzuki H, Thiruvikramank SV, Osuka A. Synthesis 1984; 616
  • 23 Tsuji Y, Huh K.-T, Yokoyama Y, Watanabe Y. J. Chem. Soc., Chem. Commun. 1986; 1575
  • 24 Brooks E, Scheidt KA. Org. Lett. 2009; 11: 1651
    • 25a Saito A, Oda S, Fukaya H, Hanzawa Y. J. Org. Chem. 2009; 74: 1517
    • 25b Fuwa H, Sasaki M. J. Org. Chem. 2009; 74: 212
    • 26a Yonghong G, Wang X.-M. Tetrahedron Lett. 2009; 50: 763
    • 26b Thansandote P, Hulcoop DG, Langer M, Lautens M. J. Org. Chem. 2009; 74: 1673
  • 28 Khan MW, Kundu NG. Synlett 1999; 456
  • 29 Khan MW, Alam MJ, Rashid MA, Chowhdury RJ. Bioorg. Med. Chem. 2005; 13: 4796
  • 30 Khan MW, Reza AF. G. M. Tetrahedron 2005; 61: 11204
  • 31 Vogel’s Text book of Practical Organic Chemistry. 5th ed. Longman group; UK: 1989: 930
  • 32 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
  • 33 Analytical data for 2-trimethylsilylethynylacetanilide 5: Crystalline solid; mp 94–95 °C. IR (KBr): 3327 (NH), 2158 (C≡C), 1695 (C=O), 1672, 1576, 1516, 1444 cm–1; 1H NMR (400 MHz CDCl3): δ = 8.39 (d, J = 8.3 Hz, 1 H, Ar-H), 7.99 (br. s, 1 H, NH), 7.41 (dd, J = 8.0, 8.3 Hz, 1 H, Ar-H), 7.32 (dd, J = 8.0, 8.3 Hz, 1 H, Ar-H), 7.01 (d, J = 8.0 Hz, 1 H, Ar-H), 2.21 (s, 3 H, COCH3), 0.30 (s, 9 H, SiMe3); 13C NMR (100 MHz, CDCl3): δ = 168.0 (CO), 139.5, 131.4, 129.9, 123.10, 118.9, 111.5, 102.2, 100.2, 24.7 (CH3), 0.10 (SiMe3); UV (EtOH): λmax = 296.2, 250.8 nm. Anal. Calcd. for C13H17SiNO: C, 67.48; H, 7.40; N, 6.05. Found: C, 67.09; H, 7.43; N, 6.03.
  • 34 Selected analytical data for N-acetyl-2-acetyl(aroyl)-indolium chlorides; N-Acetyl-2-acetyl indolium chloride 13: Crystalline solid; mp 84–86 °C. IR (KBr): 3221 (NH), 1684 (C=O), 1652, 1608, 1576, 1560, 1502, 1130 cm–1; 1H NMR (400 MHz CDCl3): δ = 11.06 (br. s, 1 H, NH), 8.59 (d, J = 8.0 Hz, 1 H, Ar-H), 7.65 (t, J = 8.0 Hz, 1 H, Ar-H), 7.46 (d, J = 8.0 Hz, 1 H, Ar-H), 7.05 (t, J = 8.0 Hz, 1 H, Ar-H), 6.10 (s, 1 H, H-3), 2.18 (s, 3 H, COCH3), 2.12 (s, 3 H, COCH3). 13C NMR (400 MHz, CDCl3): δ = 194.31 (C=O), 185.31 (C=O), 168.89, 140.152, 135.85, 133.83, 129.06, 122.41, 121.02, 98.02, 25.40 (COCH3), 23.15 (COCH3); UV (EtOH): λmax = 334, 305.4, 259.8, 238.4 nm. N-Acetyl-2-anisoyl indolium chloride 15: Pale-yellow crystals; mp 112–113 °C. IR (KBr): 3327.9 (NH), 1683.7 (C=O), 1610, 1576.7, 1500, 1413, 1360, 1175 cm–1; 1H NMR (400 MHz, CDCl3): δ = 11.04 (br. s, 1 H, NH), 8.62 (d, J = 8.0 Hz, 1 H, Ar-H), 7.91 (d, J = 8.0 Hz, 2 H, Ar-H), 7.77 (d, J = 8.0 Hz, 1 H, Ar-H), 7.51 (t, J = 7.2 Hz, 1 H, Ar-H), 7.12 (d, J = 7.2 Hz, 1 H, Ar-H), 6.97 (d, J = 8.0 Hz, 2 H, Ar-H), 6.70 (s, 1 H, H-3), 3.88 (s, 3 H, Ar-OCH3), 2.22 (s, 3 H, COCH3). 13C NMR (100 MHz, CDCl3): δ = 193.46 (C=O), 180 (C=O), 168.93, 163.41, 139.83, 133.60, 131.17, 128.99, 126.14, 123.38, 122.75, 121.46, 114.09, 94.00, 55.53 (OCH3), 25.48 (COCH3); UV (EtOH): λmax = 380.80, 360.6, 238.0 nm; Anal. Calcd for C18H16ClNO3: C, 65.56; H, 4.89; N, 4.25. Found: C, 65.87; H, 4.75; N, 4.52. N-Acetyl-2-toluoyl indolium chloride 16: Amorphous solid; mp 64–65 °C. IR (KBr): 3325 (NH), 1687 (C=O), 1569, 1508, 1446, 1423, 1365, 1190, 756 cm–1; 1H NMR (400 MHz, CDCl3): δ = 11.07 (br. s, 1 H, NH), 8.63 (d, J = 8.0 Hz, 1 H, Ar-H), 7.83 (d, J = 8.0 Hz, 2 H, Ar-H), 7.78 (d, J = 8.0 Hz, 1 H, Ar-H), 7.49 (t, J = 7.2 Hz, 1 H, Ar-H), 7.27 (d, J = 7.2 Hz, 2 H, Ar-H), 7.11 (t, J = 8 Hz, 1 H, Ar-H), 6.74 (s, 1 H, H-3), 2.41 (s, 3 H, COCH3), 2.21 (s, 3 H, Ar-CH3). 13C NMR (100 MHz, CDCl3): δ = 198.92 (C=O), 179.85 (C=O), 168.88, 143.45, 139.97, 133.74, 131.71, 128.83, 126.16, 123.16, 122.68, 121.12, 120.81, 94.48, 25.48 (COCH3), 21.62 (Ar-CH3); UV (EtOH): λmax = 361.4, 256.6 nm; Anal. Calcd for C18H16ClNO2: C, 68.90; H, 5.14; N, 4.46. Found: C, 69.20; H, 5.40; N, 4.77. N-Acetyl-2-acetyl-5-chloro-1H-indolium chloride 18: Colorless crystalline solid; mp 51–52 °C; Rf 0.75 (n-hexane–ethyl acetate, 5:1). IR (KBr): 3298.0 (NH), 1706.9 (C=O), 1581.5, 1541.0 (C=C), 1438, 1276, 1168.8, 756.0 cm–1; 1H NMR (400 MHz, CDCl3): δ = 8.00 (br. s, 1 H, NH), 7.80 (d, J = 9.2 Hz, 1 H, H-7), 7.41 (d, J = 2.0 Hz, 1 H, H-4), 7.18 (dd, J = 9.2, 2.0 Hz, 1 H, H-6), 6.34 (s, 1 H, H-3), 2.97 (s, 3 H, COCH3), 2.72 (s, 3 H, COCH3); 13C NMR (100 MHz, CDCl3): δ = 180.05 (C=O), 170.05 (C=O), 144.13, 134.90, 131.20, 128.63, 123.47, 119.63, 115.94, 107.52, 22.55 (COCH3), 13.93 (COCH3).