Synlett 2014; 25(6): 827-830
DOI: 10.1055/s-0033-1340785
letter
© Georg Thieme Verlag Stuttgart · New York

A Novel and Efficient Synthesis of δ-Sultones

Kurosh Rad-Moghadam*
Department of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran   Fax: +98(131)3220066   Email: radmm@guilan.ac.ir
,
Saeedeh Toorchi Roudsari
Department of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran   Fax: +98(131)3220066   Email: radmm@guilan.ac.ir
,
Mehdi Sheykhan
Department of Chemistry, University of Guilan, P.O. Box 41335-19141, Rasht, Iran   Fax: +98(131)3220066   Email: radmm@guilan.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 01 November 2013

Accepted after revision: 15 January 2014

Publication Date:
10 February 2014 (online)


Abstract

A class of sulfonic ionic liquids, with the supremacy of methylsulfonylimidazolium triflate hydrochloride, was found to be efficient for catalyzing the self-condensation of acetophenone derivatives and sulfonating the resulting condensates in a one-pot rapid reaction leading to the synthesis of 4,6-diaryl-1,2-oxathiine-2,2-dioxides (diaryl-δ-sultones).

Supporting Information

 
  • References and Notes

    • 1a Wasserscheid P. In Ionic Liquids in Synthesis . 2nd ed.; Wasserscheid P, Welton T. Wiley-VCH; Weinheim, Baden-Württemberg: 2008
    • 1b Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
  • 2 Rebelo LP. N, Canongiav Lopes JN, Esperanca JM. S. S, Guedes HJ. R, Łachwa J, Najdanovic-Visak V, Visak ZP. Acc. Chem. Res. 2007; 40: 1114
    • 3a Rad-Moghadam K, Youseftabar-Miri L. Tetrahedron 2011; 67: 5693
    • 3b Raha Roy S, Chakraborti AK. Org. Lett. 2010; 12: 3866
    • 3c Bica K, Gaertner P. Org. Lett. 2006; 8: 733
    • 3d Yang Q, Robertson A, Alper P. Org. Lett. 2008; 10: 5079
    • 3e Patel R, Srivastava VP, Yadav LD. S. Synlett 2010; 1797
    • 5a Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Khakyzadeh V. J. Mol. Liquid 2013; 186: 63
    • 5b Kore R, Srivastava R. Tetrahedron Lett. 2012; 53: 3245
    • 5c Chen Z, Zhu Q, Su W. Tetrahedron Lett. 2011; 52: 2601
    • 5d Liu S, Xie C, Yu S, Liu F, Ji K. Catal. Commun. 2008; 9: 1634
    • 5e Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Kruger HG, Asghari Z, Khakyzadeh V. J. Org. Chem. 2012; 77: 3640
  • 6 Shirini F, Rad-Moghadam K, Akbari-Dadamahaleh S In Green Solvents II . 1st ed.; Inamuddin AM. Springer; Dordrecht: 2012
  • 7 General Method for the Synthesis of 1,2-Oxathiine-2,2-dioxides 2af: An acetophenone derivative (1 mmol in each case) was mixed with the ionic liquid 1-methyl-3-sulfonyl-imidazolium triflate hydrochloride (0.2 mL) in a glass vial containing a stirring bar. The mixture was stirred for appropriate time until disappearance of acetophenone at r.t. (see Table 2). Progress of the reaction was monitored by TLC using silica gel coated sheets and EtOAc–petroleum ether (1:4) as eluents. After completion of the reaction (usually less than 5 min), cold distilled H2O (10 °C, 10 mL) was added to the reaction mixture and the precipitated solids were filtered, dried in air and recrystallized from EtOH (95%). Selected Data for 4,6-Di(4-fluorophenyl)-[1,2]-oxathiine-2,2-dioxide (2b): mp 220 °C. IR (KBr): 3100, 1622, 1350, 1160, 780, 840 cm–1. 1H NMR (400.2 MHz, CDCl3): δ = 7.84 (dd, 3 J HH = 8.6 Hz, 4 J FH = 4.8 Hz, 2 H), 7.60 (dd, 3 J HH = 8.6 Hz, 4 J FH= 5.2 Hz, 2 H), 7.23 (t, J = 8.6 Hz, 2 H), 7.22 (t, J = 8.6 Hz, 2 H), 6.72 (s, 1 H), 6.66 (s, 1 H). 13C NMR (100.63 MHz, CDCl3): δ = 164.7 (d, J = 254 Hz), 164.3 (d, J = 253 Hz), 155.8, 146.7, 131.6 (d, J = 4 Hz), 128.9 (d, J = 9 Hz), 128.3 (d, J = 9 Hz), 127.1 (d, J = 3 Hz), 116.6 (d, J = 22 Hz), 116.4 (d, J = 22 Hz), 113.0, 101.9. MS (70 eV): m/z (%) = 320 (52) [M+], 256 (83) [M+ – SO2], 227 (100) [M+ – CHSO3], 207 (19), 149 (22), 133 (40), 123 (45), 95 (62). Anal. Calcd for C16H10F2O3S (320.31): C, 60.00; H, 3.15. Found: C, 60.13; H, 3.21. Selected Data for 4,6-Di(4-bromophenyl)-[1,2]-oxathiine-2,2-dioxide (2c): mp 216 °C. IR (KBr): 3095, 1620, 1355‌, 1165, 770, 820 cm–1. 1H NMR (400.2 MHz, CDCl3): δ = 7.70 (d, J = 9.2 Hz, 2 H), 7.68 (d, J = 9.2 Hz, 2 H), 7.66 (d, J = 8.8 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 6.77 (d, J = 1 Hz, 1 H), 6.70 (d, J = 1 Hz, 1 H). 13C NMR (100.63 MHz, CDCl3): δ = 155.9, 146.5, 134.3, 129.7, 126.4, 125.6, 132.7, 132.4, 128.4, 127.3, 113.7, 102.1. MS (70 eV): m/z (%) = 444 (12) [M+, 81Br 81Br], 442 (22) [M+, 81Br 79Br], 440 (12) [M+, 79Br 79Br], 380 (42) [M+ – SO2, 81Br 81Br], 378 (53) [M+ – SO2, 81Br 79Br], 376 (22) [M+ – SO2, 79Br 79Br], 359 (37), 351 (5) [M+ – CHSO3, 81Br 81Br], 349 (10) [M+ – CHSO3, 81Br 79Br], 347 (6) [M+ – CHSO3, 79Br 79Br], 301 (60), 299 (62), 271 (32) [M+ – BrC6H4O, 81Br], 269 (33) [M+ – BrC6H4O, 79Br], 220 (66), 189 (81), 157 (50), 155 (52), 115 (100). Anal. Calcd for C16H10Br2O3S (442.12): C, 43.47; H, 2.28. Found: C, 43.41; H, 2.33.
    • 8a Mondal S. Chem. Rev. 2012; 112: 5339
    • 8b Koch FM, Peters R. Synlett 2008; 1505
    • 8c Buglass AJ, Tillett JG. In The Chemistry of Sulfonic Acids, Esters and their Derivatives . 1st ed.; Patai S, Rappoport Z. Wiley; New York: 1991: 789
    • 8d Enders D, Iffland D. Synthesis 2007; 1837
    • 8e Merten J, Wang Y, Krause T, Kataeva O, Metz P. Chem. Eur. J. 2011; 17: 3332
    • 8f Flohic AL, Meyer C, Cossy J. Tetrahedron 2006; 62: 9017
    • 9a Camarasa MJ, Pérez-Pérez MJ, San-Félix A, Balzarini J, De Clercq E. J. Med. Chem. 1992; 35: 2721
    • 9b Pérez-Pérez MJ, Balzarini J, Hosoya M, De Clercq E, Camarasa MJ. J. Bioorg. Med. Chem. Lett. 1992; 2: 647
    • 9c Castro SD, García-Aparicio C, Andrei G, Snoeck R, Balzarini J, Camarasa MJ, Velázquez S. J. Med. Chem. 2009; 52: 1582
  • 10 Karsch S, Schwab P, Metz P. Synlett 2002; 12: 2019
  • 11 Majumdar KC, Mondal S, Ghosh D. Tetrahedron Lett. 2009; 50: 4781
    • 12a Wolckenhauer SA, Devlin AS, Du Bois J. Org. Lett. 2007; 9: 4363
    • 12b John JP, Novikov AV. Org. Lett. 2007; 9: 61
  • 13 Shi B, Merten S, Wong DK. Y, Chu JC. K, Liu LL, Lam SK, Jäger A, Wong WT, Chiu P, Metz P. Adv. Synth. Catal. 2009; 351: 3128
  • 14 Metz P, Fleischer M, Fröhlich R. Tetrahedron 1995; 51: 711
  • 15 Ender D, Harnying W, Vignola N. Eur. J. Org. Chem. 2003; 20: 3939
    • 16a Rogachev VO, Yusubov MS, Filimonov VD. Russ. J. Org. Chem. 1999; 35: 415
    • 16b Gaitzsch J, Rogachev V, Metz P, Filimonov VD, Zahel M, Kataeva O. J. Sulfur Chem. 2011; 32: 3
  • 17 Typical Procedure for Synthesis of 1-Methyl-3-sulfonylimidazolium Triflate Hydrochloride: To a flask, kept in an ice-cooled bath and equipped with a magnetic stirring bar, was added a solution of 1-methylimidazole, (0.8 mL, 10 mmol), in anhyd CH2Cl2 (15 mL). To this continuously stirred solution was added dropwise chlorosulfonic acid, (0.66 mL, 10 mmol), whereupon white suspended solids were produced. After an hour of additional stirring at r.t., trifluoromethanesulfonic acid (0.88 mL, 10 mmol) was added slowly over a period of 15 min to the flask. Within this time, the suspended white salt inside the flask was completely dissolved. Stirring of this solution was continued for about 30 min at r.t., and then the solvent was removed under reduced pressure. According to this procedure, the ionic liquid [MSIm]OTf·HCl was obtained as a viscous yellow oil. Treatment of aqueous solution of the ionic liquid with AgNO3 (aq) resulted in the formation and precipitation of AgCl solids. Anal. Calcd for [MSIm]OTf·HCl: C, 17.22; H, 2.31; N, 8.03. Found: C, 17.33; H, 2.43; N, 7.87. NMR Data for [MSIm]OTf·HCl: 1H NMR (400.13 MHz, CDCl3): δ (minor component) = 12.62 (s, 1 H), 12.52 (s, 1 H), 8.75 (s, 1 H, CH), 7.60 (s, 1 H, CH), 7.31 (s, 1 H, CH), 4.00 (s, 3 H, Me). 1H NMR (400.13 MHz, CDCl3): δ (major component) = 12.62 (s, 1 H), 11.49 (s, 1 H, NH), 8.44 (s, 1 H, CH), 7.36 (s, 1 H, CH), 7.31 (s, 1 H, CH), 3.90 (s, 3 H, Me). 13C NMR (100.6 MHz, CDCl3): δ (minor component) = 135.15 (CH), 123.90 (CH), 12.30 (CH), 118.93 (q, 1 J C–F = 317 Hz, CF3), 36.29 (Me). 13C NMR (100.6 MHz, CDCl3): δ (major component) = 134.77 (CH), 123.19 (CH), 119.90 (CH), 118.93 (q, 1 J C–F = 317 Hz, CF3), 35.84 (Me).
  • 18 For quantitative measurement of chloride ion by Mohr’s method, see: Skoog DA, West DM, Holler FJ. Fundamentals of Analytical Chemistry. 7th ed Thomson Learning Inc; Stamford (CT, USA): 1996