Palladium-Catalyzed Linear-Selective Negishi Cross-Coupling of Allylzinc Halides

Significance: Cheong, Buchwald, and co-workers report the first completely linear-selective palladium-catalyzed Negishi cross-coupling of various 3,3-disubstituted allylzinc reagents with (hetero)aryl and vinyl (pseudo)halides, leading to prenylated (hetero)aryl and alkenyl compounds in high yield and with excellent regioselectivity.

Comment: Apart from (hetero)aryl and vinyl bromides and chlorides, nonaflates and triflates were successfully used in this protocol. Computational studies reveal that an η^1-α reductive elimination is preferred due to energetic reasons, leading exclusively to the prenylated products. Thus, the choice of catalyst and transmetalation reagent is crucial.

Selected examples:

- 78% yield
 \[\text{X} = \text{Br}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma > 99:1 \]

- 93% yield
 \[\text{X} = \text{Br}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma = 99:1 \]

- 95% yield
 \[\text{X} = \text{Br}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma > 99:1 \]

- 94% yield
 \[\text{X} = \text{Br}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma > 99:1 \]

- 90% yield
 \[\text{X} = \text{OTf}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma > 99:1 \]

- 92% yield
 \[\text{X} = \text{Br}, \text{Y} = \text{Br} \]
 \[\alpha/\gamma > 99:1 \]

- 75% yield
 \[\text{X} = \text{OTf}, \text{Y} = \text{OP(O)(OEt)}_2 \]
 \[\text{E}/\text{Z} > 99:1 \]

SYNFACTS Contributors: Paul Knochel, Nadja M. Barl

SYNFACTS 2014, 10(3), 0297 Published online: 17.02.2014

DOI: 10.1055/s-0033-1340750; Reg-No.: P00314SF