Y. YANG, T. J. L. MUSTARD, P. H.-Y. CHEONG,* S. L. BUCHWALD* (MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE AND OREGON STATE UNIVERSITY, CORVALLIS, USA)

Palladium-Catalyzed Completely Linear-Selective Negishi Cross-Coupling of Allylzinc Halides with Aryl and Vinyl Electrophiles

Angew. Chem. Int. Ed. 2013, 52, 14098-14102.

Palladium-Catalyzed Linear-Selective Negishi Cross-Coupling of Allylzinc Halides

$$R^{1}-X$$

$$\frac{C}{T}$$

$$\frac{C}$$

Significance: Cheong, Buchwald, and co-workers report the first completely linear-selective palladium-catalyzed Negishi cross-coupling of various 3,3-disubstituted allylzinc reagents with (hetero)aryl and vinyl (pseudo)halides, leading to prenylated (hetero)aryl and alkenyl compounds in high yield and with excellent regioselectivity.

SYNFACTS Contributors: Paul Knochel, Nadja M. Barl Synfacts 2014, 10(3), 0297 Published online: 17.02.2014 **DOI:** 10.1055/s-0033-1340750; **Reg-No.:** P00314SF

Comment: Apart from (hetero)aryl and vinyl bromides and chlorides, nonaflates and triflates were successfully used in this protocol. Computational studies reveal that an η^1 - α reductive elimination is preferred due to energetic reasons, leading exclusively to the prenylated products. Thus, the choice of catalyst and transmetalation reagent is crucial.

Category

Metal-Mediated Synthesis

Key words

zinc

palladium

allylzinc halides

Negishi crosscoupling

