Abstract: This review presents the recent progress in the chemistry of dimethyl acetylenedicarboxylate (DMAD). The interest in and applications of this powerful reagent with more than 135 years of history have greatly increased in the last 10 years, further proving its versatility. Undoubtedly, DMAD can be a multi-tool in the quest of molecular complexity and diversity. The extreme structural diversity of the products described in this review illustrates the powerful potential of DMAD as a building block in organic synthesis.

1 Introduction

Dimethyl acetylenedicarboxylate, commonly abbreviated as DMAD, is an electro-deficient alkyne diester. This ester, which exists as a liquid (density: 1,156 g/mL, 25 °C) at room temperature (boiling point: 95–98 °C), is highly electrophilic. As such, DMAD is used as a dienophile and a dipolarophile in cycloaddition reactions. Today, it is being used increasingly in chemical synthesis as it has proven useful in carbon–carbon bond formations. DMAD is an extremely versatile tool for organic chemists and completely new avenues have been explored for its use in combinatorial and multicomponent chemistry and heterocyclic synthesis.1 Following the pioneering discovery by Diels and Alder,2,3 the reactions of dimethyl acetylenedicarboxylate with heterocyclic compounds have been the subject of a great number of publications4,5 This treatise assembles and presents the fundamental characteristics of DMAD chemistry, as well as current developments thereof. The focus is placed on Michael reactions, cycloadditions (Diels–Alder, 1,3-dipolar and [2+2] cycloadditions), and, of course, multicomponent reactions by generation of zwitterions (Scheme 1). Recent literature examples that are both illustrative of the power of this reagent in the construction of complex heterocyclic molecules and pivotal for the design of synthetic strategies toward natural or designed targets are discussed herein. This review seeks to highlight the ‘power of DMAD’ by examining selected examples of its elegant applications.

DMAD is inexpensive and widely available, or it can be prepared from maleic acid (1) via a bromination–dehydrohalogenation sequence to furnish acetylene dicarboxylic acid (4), which upon esterification with methanol using sulfuric acid gives the desired dimethyl acetylenedicarboxylate (5). It is noteworthy that DMAD is still synthesized in exactly the same way as it was originally obtained (Scheme 2).6

2 Michael Reactions

DMAD is a powerful Michael acceptor and can take up various nucleophiles, most commonly sulfur and nitrogen...
(Scheme 3). A common strategy is to use it in an initial reaction as a Michael acceptor and then carry out a cyclization, usually through loss of –OMe or –CO₂Me. The majority of reactions have been carried out on heteroaromatic systems, such as pyridines, quinolines, isoquinolines, thiazoles, imidazoles, phenanthridines, quinoxalines, pyridazines and their substituted derivatives, with DMAD being used as a cyclizing agent.

Scheme 3

2.1 Sulfur as Nucleophile

2.1.1 Reactions with Thiourea, Thioamide and Thiosemicarbazide Derivatives

Thiazole, thiazolidines, thiazolidinones and thiazinones are very important groups of heterocyclic compounds covering a broad spectrum of biological activity. The reaction between thioamides, thiosemicarbazides and thiourea derivatives 7 with DMAD is known to be a convenient and effective method for the preparation of the aforementioned heterocycles depending on the reaction conditions. Generally, the sulfur attacks the triple bond, resulting in the formation of thiolactam intermediate 8, followed by the aminolysis of an ester group (Scheme 4), thus leading to the formation of either 1,3-thiazolidin-4-ones 9 or 1,3-thiazin-4-ones 10.

Ahmadi et al.9 developed a general strategy based on the reaction of thiourea derivatives 11 with DMAD (Scheme 5) to prepare 4-thiazolidinone derivatives 12. Furthermore, various thiosemicarbazone derivatives 13 (furfural, benzophenone, butanal, p-methoxybenzaldehyde, etc.) and DMAD reacted in ethyl acetate to give compounds 14 as the only products, although from the reaction in anhydrous methanol only compounds 15 were formed. It is noteworthy that the adducts 14 could be converted into products 15 by refluxing the reaction mixture in anhydrous methanol (Scheme 6).10

Biographical Sketches

Constantinos G. Neochori-tis was born in Thessaloniki, Macedonia, Greece in 1982. He received his MSc (2006) and his PhD (2011) in organic chemistry under the guidance of Professors J. Stephanidou-Stephanatou and C. Tsoleridis from the Department of Chemistry of Aristotle University of Thessaloniki. His research interests include bioactive heterocycles, drug design and multicomponent reactions. He has produced more than 12 peer-reviewed papers.

Tryfon Zarganes-Tzitzikas was born in Thessaloniki, Greece in 1988. He obtained his BSc degree in chemistry from the Aristotle University of Thessaloniki in 2010. In March 2012 he received his MSc with emphasis in organic chemistry under the guidance of Professors J. Stephanidou-Stephanatou and C. Tsoleridis at Aristotle University of Thessaloniki.

Julia Stephanidou-Stephanatou was born in Thessaloniki, and studied chemistry at Aristotle University of Thessaloniki. She completed her PhD under the supervision of Professor W. D. Ollis and Sir J. F. Stoddart at the University of Sheffield England, where she worked on the synthesis and conformational behaviour of medium-sized ring compounds. Then she returned to the University of Thessaloniki and after habilitation in 1982, she rose through the ranks to Professor of Organic Chemistry (1992). She currently works on multicomponent reactions and heterocyclic chemistry.
In a more characteristic example, compounds 16, upon reaction with DMAD, yielded the 1,3-thiazol-4-ones 17 as the major products (Scheme 7) rather than the 1,3-thiazin-4-ones 18. Likewise, an acridine reactant with a bulky substituent on N-1, such as 19, produced the thiazolidinone 21 upon cyclization with DMAD (Scheme 8).

Moreover, reactions of DMAD with the N-imidoylthioureas 22 in acetic acid afforded the thiadiazepines 23 in 65–84% yield (Scheme 9).
In recent decades, ferrocenes (Fc) have attracted attention because of their wide utility in materials science and catalysis. Therefore, the DMAD-mediated cyclization of 1,5-bis(ferrocenylmethylene)thiocarbono hydrazide (24) and its S-methyl derivative 25 were studied, leading to the preparation of biologically promising sulfur heterocycles 26 and 27, and the methylthio-substituted nitrogen heterocycles 28 and 29, respectively (Scheme 10). In addition, by treatment of the ferrocenyl thiosemicarbazone derivatives 30 with DMAD in refluxing acetonitrile, three types of cyclic products (31, 32 and 33) were isolated in moderate to good yields. The methylthio derivatives 34, obtained by selective alkylation of 30, were also allowed to react with DMAD under the same conditions, thereby affording complex mixtures of methylthio-substituted products including pyrimidones 35, imidazolones 36 and fumarates 37 (Scheme 11). Reaction of DMAD with dithizone (2:1 molar ratio) in methanol resulted in the formation of thiadiazine 39 through a Michael-type addition and a Diels–Alder [4+2]-cycloaddition reaction. In contrast, the reaction of DMAD with dithizone (1:1 molar ratio) in methanol gave compound 40 (Scheme 12). Thiadiazine derivatives are widely used as nematicides, fungicides, herbicides and insecticides. In addition, some thiadiazine derivatives show activity against tripanosoma cruzi amastigotes.
2.1.2 Reaction with Thiones and Thiols

An example of the ‘DMAD strategy’ for the synthesis of heterocycles was described by Neochoritis et al. It is well known that Michael-type amine and thione addition to acetylenic esters leads to E/Z isomeric mixtures. The reaction of DMAD with 1-arylaminoimidazole-2-thiones in the presence of a base through a Michael reaction afforded imidazolothiazoles. However, in the reaction of 41 with DMAD in the absence of a base, only the S-substituted products 42 were formed as an E/Z mixture. A thorough investigation of this thio-Michael-type addition of DMAD and an explanation of the reaction’s stereospecificity were reported (Scheme 13).

A systematic study of the reactions of DMAD with 5-mercaptoazoles, 44, 47, 49 and pyridine-2-thiones 52 was also carried out and, as a result, a number of novel imidazothiazinones 45, imidazothiazolones 46, triazoles 48, pyrazolothiazinones 51 and thiazolopyridines 53 were obtained. The size of the ring, formed in the reactions of cyclic thioamides with DMAD, was found to be dependent on the size of the starting heterocycle. Thus, a five-membered thiazolidine ring condenses onto the pyridine ring whereas a six-membered thiazine ring is fused onto a five-membered azole ring (Scheme 14).
Furthermore, the reaction of quinazoline derivatives 54 with DMAD affording compounds 56 was investigated within a study of the varying reactivity of nitrogen and sulfur as nucleophiles with an electron-deficient ester (Scheme 15).9

\[\text{Scheme 15} \]

The reaction of DMAD with thiols 57 in water was reported to lead to E/Z isomeric mixtures of 58 in quantitative yield (Scheme 16).20

\[\text{Scheme 16} \]

In 2008, DMAD was used in the synthesis of 3-substituted thieno[3,2-b]furan derivatives 61. The Michael reaction between methyl thioglycolate and DMAD, followed by in situ intramolecular cyclization, afforded the 3-hydroxythiophene 60 in 85% yield (Scheme 17).21

\[\text{Scheme 17} \]

The reaction of DMAD with arylidenemalononitriles 62, in the presence of potassium isothiocyanate in acetonitrile, led to a mixture of cyanothiophene 63 and dicyano-cyclopenta-1,3-diene derivatives 64. It was proposed that this multicomponent reaction could have been started with the addition of isothiocyanate ion to DMAD (Michael reaction) followed by addition of 62 (Scheme 18).22

\[\text{Scheme 18} \]

2.2 Nitrogen as Nucleophile

2.2.1 Reactions with Tertiary Amines and Heterocycles

In recent years, there has been considerable interest in investigations of the reactivity of nitrogen-containing heterocycles with DMAD affording a wide range of products. For example, benzothiazines and benzothiazepines 65 and 68 were allowed to react with DMAD in methanol, affording the corresponding pyrrolo- and oxazolo-benzothiazines and benzothiazepines 67 and 70. It was suggested that the products were formed by the addition of one molecule of DMAD to one molecule of benzothiazine or benzothiazepine, with elimination of one molecule of methanol (Scheme 19).5

\[\text{Scheme 19} \]
Fodor et al.23 reported that benzothiazines 71 reacted with DMAD in acetonitrile at room temperature, affording the regioisomeric ring systems 1,5-thiazocines 73 and 75 in a ratio of approximately 1:1. DMAD was found to attack either the nitrogen or sulfur atom of 71. The key intermediates in the formation of 5,6-dihydro-2H-1,5-benzothiazocines 73 were most probably the zwitterions 72, whereas the unexpected formation of 5,6-dihydro-4H-1,5-benzothiazocines 75 was explained by invoking intermediates 74 (Scheme 20).

The reaction of pyrrolopyrimidine 76 with DMAD afforded, depending on the reaction conditions, the trifluoroacetylpyrroles 79 and 80 through the zwitterionic intermediates 77 and 78 (Scheme 21).24

Tetrahydropyrrolopyridines 81 and tetrahydropyridindoles 86 underwent piperidine ring opening under the action of DMAD in acetonitrile, alcohols or aqueous dioxane, providing substituted pyroles 82–85 and 87, respectively (Scheme 22).25,26

In 2008, reactions of quinoline derivatives with DMAD were reported. The reaction began with a Michael addition of the tertiary amine in benzonaphthyridines 88 to the triple bond of the alkyne. The intermediate zwitterion 89 was further transformed by two pathways, A and B. Pathway A was conditioned by the acidic character of the CH$_2$ group and led to ylide 90, which, by Stevens rearrangement (characteristic of ylides), was transformed into acryloyl-substituted naphthyridines 92. The implementation of pathway B was caused by the nucleophilic attack of the zwitterion on the nitrile group. The intermediate 91 was converted into succinate 93. Naphthyridines 94 (R1 = Bn, R2 = H and R1 = 'Pr, R2 = Br) did not react with DMAD in methanol at room temperature, whereas reflux led to the elimination of benzyl or isopropyl substituents and the formation of N-substituted derivatives 95 (Scheme 23).27
Tetrahydropyridines, \([c]\)-condensed with \(\pi\)-excessive pyrrole, indole, and thiophene units or with a benzene ring, were converted to either condensed azocines \(^{26}\) or azonines \(^{28}\) under the influence of DMAD. However, in the case of tetrahydropyridines \(96\), the reaction most probably begins with the addition of the nitrogen atom of the tetrahydropyridine moiety of \(96\) to the triple bond of DMAD, resulting in the formation of an ammonium zwitterion leading, finally, to compounds \(97\), \(98\) and \(99\) (Scheme 24). \(^{29}\)

Analogous opening of the tetrahydropyridine ring was observed by the reaction of thiazolo- and thiadiazolo-condensed pyridopyrimidines \(100\) and \(102\) with DMAD in methanol, at temperatures from \(-15\) to \(-20\, ^\circ\text{C}\). These reactions led to the 5-vinyl-substituted thiazolopyrimidines \(101\) in 56–95% yields and to the thiadiazolo-pyridopyrimidines \(103\) in 20–60% yields, respectively (Scheme 25). \(^{29}\)
In 2012, the synthesis of various highly functionalized thi-azolopyridines 105, along with the open chain products 106, was accomplished by the reactions of keto–enol tautomeric pairs of heterocycles 104 with DMAD (Scheme 26).30

It was reported that the parent Tröger base 107 reacted with DMAD in the presence of boron trifluoride–diethyl etherate to give compound 108 in 60% yield (Scheme 27).31

Hydrogenated γ-carbolines 109 underwent tandem piperidine ring cleavage on treatment with DMAD in the presence of alcohols, producing 3-alkoxymethyl-substituted indoles 112 in good yields. These compounds were cyclized to tetrahydroazocino[4,5-b]indoles 113 in the presence of aluminum trichloride (Scheme 28).32

González-Gómez et al.33 reported novel domino reactions in β-carbolines with DMAD. Vinylpyrrolo-[2,1-a]-β-carbolines 114 gave different products upon reaction with dienophiles as, with DMAD, a novel domino process took place, involving Michael attack and rearrangement, affording complex polycycles like 115, 116 and 117.

In addition, the reaction of 2-allyl-1-vinyl-β-carboline 118 with DMAD gave a mixture of products 119 and 120 in a 1:3 ratio, 120 being an unstable product. These products resulted from the same rearrangement reaction. The reaction began with the nucleophilic attack on DMAD, behaving as a Michael acceptor, followed by nucleophilic attack on one unsaturated carbon which led to new polycycles with an increase in skeletal complexity (Scheme 29).

2.2.2 Reactions with Primary and Secondary Amines

Zewge et al.34 described a mild and efficient synthesis of the quinoline derivatives 122 through a Michael reaction of commercially available aryl amines with DMAD in alcoholic solvents (Scheme 30).
The reaction of primary and secondary aliphatic amines $\mathbf{123}$ and $\mathbf{125}$ with DMAD, for less than two hours, in aqueous medium afforded compounds $\mathbf{124}$ and $\mathbf{126}$, respectively (Scheme 31).

The reaction of 1,2-diaminocyclohexane ($\mathbf{127}$) with DMAD gave quinoxaline derivatives $\mathbf{128}$ and/or $\mathbf{129}$, depending on the molar ratio of the starting materials (Scheme 32).

In the next example, the initial Michael reaction on nitrogen (amine group) was followed by a reaction with a third component. Ramesh et al.37 described a simple and efficient three-component protocol for the synthesis of highly substituted pyroles $\mathbf{134}$ by using amines $\mathbf{132}$, DMAD and glyoxal ($\mathbf{133}$), with DABCO as a catalyst (Scheme 34).

Highly functionalized pyroles were also synthesized by using amines, DMAD, triphenylphosphine and arylglyoxals.38
In 2011, three-component reactions involving 3-amino-carbazoles 135, DMAD and aromatic or aliphatic aldehydes affording carbol ine derivatives 137 and 138 were described (Scheme 35).39

Although the reaction of thiosemicarbazones with DMAD was used for the synthesis of thiazolidinones9 (Scheme 5), Vijesh et al.40 reported the synthesis of imidazole derivatives 141, containing a substituted pyrazole moiety, by reflux of the thiosemicarbazones 140 with DMAD in methanol (Scheme 36).

Moreover, reaction of thiosemicarbazide 142 with DMAD, either in hot methanol or in a solventless system under microwave irradiation (Scheme 37), afforded the triazine derivative 143.41

The reaction of DMAD with guanidines 144 yielding the five-membered imidazolin-4-ones 145 was also reported (Scheme 38).42

The biological activity of 1,4-diazepine derivatives has been widely explored. Zaleska et al.43 studied the formation of new tricyclic ring systems of fused 1,4-diazepines. They found that reaction of the zwitterionic compound 146 with DMAD led to the formation of diazepine 149, in 57% yield, through a Michael reaction (Scheme 39).
2.3 Oxygen as Nucleophile

Humphrey et al.44 reported that Michael reaction of oxime151 afforded, through oxygen, a Z/E mixture of adducts152 (Scheme 40). The final target of this synthesis was an HIV integrase inhibitor.

Furthermore, a gold-catalyzed approach for the regioselective synthesis of highly substituted pyroles155 directly from oximes153 and DMAD was recently developed (Scheme 41).45

2.4 Addition to Carbon–Carbon Double Bonds

Nitrogen heterocycles containing phosphorus functional groups are compounds of interest in many areas of industrial chemistry such as the textile, pharmaceutical, and agricultural fields.46 A useful strategy for the preparation of such compounds is based on the cyclization of functionalized enamines. β-Enamine phosphate oxides were prepared by a one-pot process involving the sequential reaction of triphenylphosphine oxide with methyl lithium and then with alkyl and aryl nitriles. The enamines added regioselectively, through the β-carbon, to the carbon–carbon triple bond of DMAD with a stereoselectivity that depended on the substituent of the enamine. Heating the phosphoryl enamines afforded phosphorus-substituted 2-pyridones159 and 2-pyrrolidones160 in good to excellent yields (Scheme 42).47

A general and versatile high-yielding method for the divergent and diastereoselective synthesis of polyhydroxylated indolizidines such as163 has been established using DMAD. At ambient temperature, the reaction of161 with DMAD proceeded rapidly to form a yellow-colored compound, which was isolated and identified as the adduct162 (Scheme 43).48 In warm methanol,162 was converted into 5-indolizinone-7,8-dicarboxylate in 88% yield; this was then itself converted into the polyhydroxylated indolizidine163 in good yield through practical hydrogenation and reduction reactions.

Indigotin (166) is the major chemical constituent of indigo, which has been used as a dyestuff for at least 4000 years. The reduced monomeric unit of indigotin, 3-hydroxyindole (167) is much less studied owing to its easy oxidative dimerization to indigotin166. The pyrrolone de-
Derivative 168, a monomeric unit of indigotin 166 with the benzene ring being replaced by a heterocyclic ring, underwent a Michael reaction with DMAD, giving 169 (30%) as a single isomer. Reactions of 1-substituted pyrrol-3(2H)-ones with DMAD could also take place at the corresponding 2-position, though the tautomeric nature of the product was different (Scheme 45).50

Scheme 45

3 Cycloaddition Reactions

As previously stated, DMAD is a powerful dienophile widely used in cycloaddition reactions. The most important examples of cycloadditions are the Diels–Alder reactions, in which very often DMAD is used as a standard to check the efficiency of various dienes, and also the 1,3-dipolar cycloaddition reactions. Moreover, [2+2] cycloadditions involving DMAD are also reported. There are also some examples of other cycloadditions, such as [8+2], involving this useful alkyne diester (Scheme 46).

Scheme 46

3.1 Diels–Alder Reactions ([4+2] Cycloadditions)

3.1.1 Reactions with Dienes and Triple Bonds

An important strategy for the construction of aromatic systems or heterocyclic cores in one stage relies on the [4+2] cycloaddition of 1,3-dienes with DMAD and this is usually followed by an oxidation. The reaction of DMAD with various dienes leading to the preparation of functionalyzed arenes and heterocycles are numerous since it is well known that they represent important building blocks in organic and medicinal chemistry.51 As an example the [4+2] cycloaddition of trimethylsilyloxy-1,3-diene 170 with DMAD afforded dimethyl 4-chloro-3,5-dihydroxopythalate 172 (Scheme 47).52

Kotha et al.53 introduced a new method for the synthesis of constrained phenylalanine derivatives. The Diels–Alder reaction of the diene 173 with DMAD, followed by oxidation of the resulting cycloadduct, gave highly substituted phenylalanine derivatives 175 (Scheme 48).

Scheme 48

The reaction of 176 with DMAD afforded a new Diels–Alder adduct 177 in 58% isolated yield (Scheme 49). However, when the reaction was carried out with 1,1,2,2-tetracyanoethylene (TCNE) under the same reaction conditions, no reaction was observed.54

Dendralenes are cross-conjugated hydrocarbons that quickly became attractive starting materials for organic synthesis. The following example shows a diene-transmissive Diels–Alder addition of DMAD to dendralene 178. The process could be stopped at the mono adduct stage 179, but it could also be performed, under harsher conditions, to yield directly the 2:1 adduct 180 (Scheme 50).55

Scheme 47
DMAD is often used in natural product synthesis in key transformation steps. A recent example presenting a stereoselective synthesis of marine sesterterpenes 188 and 189 included a Diels–Alder addition with DMAD (Scheme 53).

Nair et al.57,58 reported the facile Diels–Alder reaction of compound 183 with DMAD affording a hexasubstituted benzene derivative 184 (Scheme 52).

Sher et al.60 showed that the reaction of compound 192 with DMAD, in the presence of a catalytic amount of p-toluenesulfonic acid (PTSA; 5 mol\%), afforded 193 (Scheme 54).
The Diels–Alder reaction of α-tropolone 194 with DMAD, promoted by triethylamine or silica gel, yielded adduct 195 as reported by Okamura et al. (Scheme 55).

Scheme 55

The synthesis of 198 commenced with 1,6-methano[10]annulene 196, which added DMAD via its ring-closed bis-norcaradiene valence isomer (Scheme 56).

Scheme 56

DMAD has also been employed in materials synthesis. Recently, a Diels–Alder reaction of compound 199 with DMAD affording compound 200, a useful intermediate for the synthesis of photoalignment layers for liquid crystals, was reported (Scheme 57).

Scheme 57

Allenes, by virtue of their reactive and cumulative double bonds, are excellent partners for both [4+2] and [2+2] cycloadditions. Allenylphosphonates (phosphorylated allenes) and allenylphosphine oxides constitute a class of compounds that are more readily accessible (and inexpensive) than most of the other allenes. Allenes 201 (R = Ph, p-tolyl, bromophenyl, p-anisyl) with a terminal =CH2 group gave products 202–204. Even more interesting was the reaction of vinyl allenes 205 with three equivalents of DMAD that led to products 206–209 (Scheme 58).

DMAD was also used recently in a transition-metal-mediated annulation in which polyfunctionalized arenes were constructed. This strategy is based on an enyne metathesis followed by Diels–Alder cycloaddition and oxidation. Treatment of diphenylacetylene (210) with the second-generation Grubbs catalyst and DMAD, in the absence of additives, gave a mixture of 211, resulting from enyne metathesis, and the non-metathesis product 212 (Scheme 59).
3.1.2 Reactions with o-Quinodimethanes

The elusive intermediate o-quinodimethane, also named o-xylene, has attracted much attention from both theoretical and synthetic chemists over the past 30 years. As cis-dienes, o-quinodimethanes have a remarkable Diels–Alder reactivity and are often used as building blocks in the syntheses of cyclic organic compounds by inter- or intramolecular [4+2] trapping.

As an example, the efficient procedure for the generation of the imidazole-4,5-quinodimethane intermediate 214, from imidazole derivative 213 and its first-time capture by DMAD to afford the corresponding Diels–Alder benzimidazole adducts 215 and 216, was reported (Scheme 60).68

Bicyclic o-quinodimethanes were also prepared from the tricyclic sulfones 217. However, reactions had to be carried out by heating the sulfones with an excess amount of DMAD, in the absence of solvent at 250–320 °C, in order to afford the corresponding cycloadduct 219 (Scheme 61).69

Benzopentathiepins 220 reacted slowly with DMAD to give the benzodithiins 221 as the only reaction products, with the reaction being greatly accelerated by the addition of triphenylphosphine. The pentathiepin 222 also reacted with DMAD in the presence of triphenylphosphine in dichloromethane, at room temperature, to give the 1,4-dithiin 223 in 78% yield. Triphenylphosphine presumably initiates the reaction by nucleophilic attack on sulfur, opening the pentathiepin ring 220 and removing sulfur atoms, possibly to give intermediate 224,70 which is intercepted by DMAD (Scheme 62).

3.1.3 Heterocycles as Dienes

Functionalized arenes 227 were also synthesized through substituted α-pyrones 226, which have been used as important synthetic intermediates72 and are found in a wide variety of biologically interesting natural substances (Scheme 63).73
Narayan and Sarpong74 reported the reaction of DMAD with indolizinone228, a nitrogen heterocycle recently reported in the literature as a very useful precursor to indolizidine natural products, pharmaceutical agents and new materials. It was supposed to give the product229; this, however, proved to be unstable and afforded instead the retro-Diels–Alder product230 (Scheme 64).

It has been known for a long time that the reaction of alkynes with heterocyclic dienes, such as furans, results in the formation of bridged oxacycles, which can be transformed into functionalized benzene derivatives by acidic hydrolysis. Diels–Alder reactions of 4-substituted 2-(2-furyl)-, 2-styryl-, and 2-crotyl-3-chlorofurans such as231 with DMAD occurred exclusively on the chlorofuran diene moiety and not on the non-chlorinated furano diene or the chlorinated exocyclic diene alternatives, demonstrating the predominance of the halogen effect in the furan Diels–Alder reaction as shown by Ram and Kumar.75,76 For example, chlorobifuryl, having a chlorofuran ring and a non-halogenated furan ring, on heating with DMAD gave exclusively the corresponding furylchlorophenol233 in 74\% yield by cycloaddition to the chlorofuran ring (Scheme 65).

Moreover, Diels–Alder reactions of furano derivatives such as234 with DMAD affording functionalized phenols236 (Scheme 66) have been reported.77

Furthermore, the reaction of DMAD at the furan fragment of 3,4-fused 2-furyltetrahydroquinoline derivatives237 according to the [4+2] cycloaddition pattern was studied. The reaction proved not to be stereoselective, yielding two diastereoisomeric 7-oxabicyclo[2.2.1]hepta-2,5-diienes 238\textsubscript{a,b} in 32–88\% total yield (Scheme 67).78

Reactions of DMAD with pyrroles have been studied extensively. The [4+2] cycloaddition between pyrroles and dienophiles has been shown to be a general method for the synthesis of 7-azabicyclo[2.2.1]hepta-2,5-diene and 7-azabicyclo[2.2.1]hept-2-ene derivatives. However, pyrrole is a poor diene for the [4+2] cycloaddition and usually reacts with DMAD to give Michael addition products. Moreover, when a pyrrole nitrogen atom bears an electron-withdrawing group, the aromatic ring was found to be more reactive as a diene toward DMAD.26 Nevertheless, application of ultrasound to the reaction of pyrrole239 with DMAD in an aqueous solution resulted in the cycloaddition adduct240 in 60\% yield without the formation of Michael-type products (Scheme 68).79

The [4+2] cycloaddition of 1-(alkylamino)pyrroles or 1-(alkoxycarbonylamino)pyrroles with electron-deficient alkynes was shown to follow a predictable pathway and provide a remarkably simple route for the preparation of substituted benzenes. Upon heating241 with three equivalents of DMAD, benzene derivatives243 were obtained in good yields (50–90\%; Scheme 69).79
Pyrrolo[3,4-b]pyrrole 244 afforded the cycloadduct 245 on treatment with DMAD. Oxidation of the latter with m-chloroperbenzoic acid, followed by thermolysis, gave the indole derivative 246 (Scheme 70).80

Scheme 70

3.1.4 Heterocycles with an Exocyclic Double Bond

Ikeuchi et al.81 described a ‘Cp2Zr’-mediated reaction and subsequent copper(I)-catalyzed carbon–carbon bond formation for the construction of biologically attractive molecules such as compounds 250. In order to examine the reaction’s utility, preliminary reactions of the latter compounds to obtain polycyclic heterocyclic systems were examined (Scheme 71). To this end, the reaction of the allylation product 248 gave the unstable diene 249 in good yield, through intramolecular enyne metathesis82 using the second-generation Grubbs catalyst (ambient temperature for 15 hours); 249 was then used directly for the subsequent Diels–Alder reaction with DMAD at ambient temperature for 10 hours leading to compound 250 as a major product (250/251 = 24:1 in the case of X = NMe).

Interaction of pyrrole 252 with DMAD afforded, after exposing adduct 253 to air, the hydroxyindole 254 and the bis-adduct 7-vinylindole 255 (Scheme 72). The latter compound was formed as a result of the 1,2-addition of the primary cycloadduct 253 to a second DMAD molecule followed by elimination of trimethylsilonol. When the reaction was performed without solvent, under an oxygen atmosphere, indole 254 was mainly formed (254/255 = 72:28).83

Indoles 257 and 259 were obtained, in 17% and 27% yield respectively, by reaction of 3-vinylpyrroles 256 and 258 with DMAD (Scheme 73).83c

Scheme 72
tion of 261 with itself. Similarly, 3-vinylpyrrolo[2,3-b]pyridine 265 was treated with DMAD (1.2 equiv) to give the indole derivative 266 (Scheme 74).83d

3.1.5 Hetero-Diels–Alder Reactions

The reaction of equimolar amounts of enaminoes84 267 with DMAD resulted to the formation of a variety of pyran and pyrrole-3-ylidene derivatives 268 and 269 (Scheme 75) having pharmacological and medicinal significance. The mechanism concerning pyran derivatives 268 involves an initial [4+2] cycloaddition followed by a 1,3-hydride shift, whereas for 269 an initial enamine-type nucleophilic attack of the α-carbon of 267 at the acetylenic carbon of DMAD is proposed.85

Scheme 75

Compound 270 reacted with DMAD under microwave conditions to yield the pyridine derivative 273, most likely formed via intermediate cycloadduct 271. The latter underwent retroaddition via loss of methylene aniline to yield 272, the conversion of which, under the reaction conditions, led to 273 (Scheme 76).86

The reaction of thiazoles 274 with DMAD gave pyridines 275 through a hetero-Diels–Alder reaction and further sulfur extrusion,87 although, in this case, extremely harsh conditions were required. The activating effect of the amino functionality in the reaction of 2-(dimethylamino)thiazole toward electron-poor reagents, such as DMAD, tosyl isocyanate, and ketenes has been also demonstrated.88 Nevertheless, no cycloadducts were formed in these reactions, but only Michael-type products resulting from the functionalization at the 5-position of the thiazole ring. This activating effect was evident when 2-amino-4-methylthiazole (276) was allowed to react with DMAD. From this reaction, conducted at room temperature, a new adduct 277 was isolated in 42% yield, along with the thiazolopyrimidinone 278 formed in 30% yield. The formation of 277 was explained as the result of a [4+2] cycloaddition in which the heterocycle acts as heterodiene (Scheme 77).87b
3.2 1,3-Dipolar Reactions ([3+2] Cycloadditions)

Although 1,3-dipoles have been known for more than a century, their cycloaddition reactions are nowadays powerful synthetic tools, providing access to highly functionalized oxygen-, sulfur- and nitrogen-containing heterocycles. The synthetic utility of these cycloadditions has been further enhanced by the development of tandem processes that allow the preparation of complex molecules starting from relatively simple materials.

3.2.1 Azomethine Ylides

Azomethine ylides have become one of the most investigated classes of 1,3-dipoles. The substituted pyroles were obtained by a one-pot reaction between quinazolinium bromides and DMAD in 1,2-epoxybutane as the reaction medium and acid acceptor (Scheme 78).

Bridgehead nitrogen heterocycles are important natural products. Among them, indolizines have received much attention in recent years owing to both their intriguing molecular structures featuring \(\pi \)-delocalized electrons and their important biological activities. These molecules have been used in various pharmaceutical applications. The synthesis of indolizine \(\text{282} \) in 53% yield, via the 1,3-dipolar cycloaddition between pyridinium bromide \(\text{281} \) and DMAD, using Amberlite IRA-402 (OH) ion-exchange resin as a base, was recently described (Scheme 79).

1,3-Dipolar cycloaddition of \(\text{285} \) with DMAD as dipolarophile yielded the pyrazole derivative \(\text{286} \) in low yield. Attempts to improve the yield by insertion of a spacer yielded pyrazoles \(\text{287} \) and \(\text{288} \) as a result of overreaction in a Michael fashion with DMAD. The polymer-supported azomethine imines which were generated from polymer-supported silylnitrosoamides by a 1,4-silatropic shift gave pyrazole derivatives. A feature of this reaction is that no cleavage operations are required after the cycloaddition. Thus, azomethine imine \(\text{290} \), which was generated via a 1,4-silatropic shift of the silyl group onto the oxygen of the nitroso group, underwent 1,3-dipolar cycloaddition with DMAD to give the five-membered-ring adduct \(\text{291} \).

It is interesting that the acyl group was spontaneously eliminated as a silyl ester and N-unsubstituted pyrazoles \(\text{292} \) were obtained after aromatization. If a polymer is attached to the acyl group of \(\text{289} \), the versatility of the reaction is greatly enhanced (Scheme 80).
3.2.2 Nitrones

Mlostoń et al.95 described a new method for the preparation of 1,4,5-trisubstituted (imidazol-2-yl)acetates 296, based on the reaction of the corresponding imidazole 3-oxides 293 with DMAD. Formation of the products was rationalized by a formal 1,3-dipolar cycloaddition and subsequent oxaloyl cleavage (Scheme 81).

Scheme 81

Chakraborty and Luitel96 reported the cycloaddition of N-benzyl fluoro nitrones 298 with DMAD, accelerated by ionic liquids, to afford novel isoxazoline and isoxazolidine derivatives 299 in a one-pot reaction process (Scheme 82).

Scheme 82

3.2.3 Azides

The 1,3-dipolar cycloaddition reaction between alkynes and azides, developed by Huisgen,97 is one of the most popular reactions because of the resulting five-membered substituted 1,2,3-triazole heterocyclic ring. It was found to have a wide range of industrial applications such as for dyes, photostabilizers and agrochemicals and also in the designing of new drugs. Adducts of azidomethylamines 300 and 302 with DMAD afforded compounds 301 and 303, respectively (Scheme 83).98

In 2009, a fast one-pot, microwave-assisted, solvent-free and high-yielding synthesis of dimethyl 1H-1,2,3-triazole-4,5-dicarboxylate (305) by 1,3-dipolar cycloaddition reaction with trimethylsilyl azide 304 and DMAD was described (Scheme 84).99

Kumar and Rode100 reported the first general approach for the synthesis of fused 1,2,3-triazolo-δ-lactams 309 using a Huisgen [3+2]-dipolar cycloaddition reaction in water, between activated alkynes and azides such as 307 derived from different amino acids, this ‘click’ reaction was followed by cyclization (Scheme 85).

Scheme 83

Kumar and Rode100 reported the first general approach for the synthesis of fused 1,2,3-triazolo-δ-lactams 309 using a Huisgen [3+2]-dipolar cycloaddition reaction in water, between activated alkynes and azides such as 307 derived from different amino acids, this ‘click’ reaction was followed by cyclization (Scheme 85).

Scheme 84

Semakin et al.101 reported that α-azidooximes, readily obtained from aliphatic nitro compounds, were cleanly converted into previously unknown pyrazinones 313. Here, oximes 310 reacted with DMAD via [3+2] cycloaddition at room temperature affording triazolines 311. However, the cycloaddition was accompanied by partial hydrolysis of the oximino group leading to carbonyl derivatives 312. This side process could be avoided by carrying out the [3+2] cycloaddition of 310 with DMAD in toluene. Oximes 311 were readily reduced with Raney nickel when R1 was not an ester giving the target heterocycles 313 (Scheme 86).
3.2.4 Nitriloxides

Tandem electrophilic cyclization, [3+2] cycloaddition and rearrangement reactions of 2-alkynylbenzaldoximes 314 (R1 = H, F; R2 = Ph, 4-MeOC6H4, etc.), DMAD and bromine afforded the unexpected isoquinoline-based azomethine ylides 315 in good to excellent yields. The products could be further worked upon via palladium-catalyzed cross-coupling reactions to generate highly functionalized isoquinoline-based stable azomethine ylides (Scheme 87).102

Scheme 87

3.2.5 Diazoalkanes

In the last ten years, the range of indazole derivatives with valuable biological activities increased substantially. Among them, agonists of estrogen receptors and dopamine D3 receptors, HIV protease inhibitors and new anti-inflammatory substances have been discovered. Strakova et al.103 described the [3+2] cycloadditions of a series of tetrahydroindazoles 316 with DMAD that gave the spiro derivatives 317 (Scheme 88).

Scheme 88

3.2.6 Sulfur Dipoles

Indoles fused with the 1,2-dithiole-3-thione ring, as in compound 318, could be of interest because such compounds have a broad spectrum of biological activity and may be useful synths for many sulfur heterocycles.104 A one-pot synthesis of derivatives 319 and 320 from 318 with DMAD by 1,3-dipolar cycloaddition was reported (Scheme 89).105,106

Scheme 89

Since the famous work by Wudl et al. on tetrathiafulvalene (TTF),107 long after dibenzotetrathiafulvalene was first reported, interest in this exceptional π-donor in the field of materials chemistry has been on a constant increase. DMAD, which is of particular interest due to its dienophilic and dipolarophilic properties, in combination with its electrophilicity, has been widely exploited in the development of highly functionalized tetrathiafulvalenes. A one-step synthesis of tetrathiafulvalenes 321 from carbon disulfide and DMAD, under high pressure (5000 atm) was proposed.108 Replacing carbon disulfide by carbon diselenide and carbon sulfide selenide allowed this reaction to be used to access analogues of tetrathiafulvalene (Scheme 90).

Scheme 90

2-Thioxo-1,3-dithioles 323, which are good precursors of tetrathiafulvalenes upon dimerization–desulfurization, can also be obtained from DMAD, carbon disulfide and either bis(2,2,6,6-tetramethylpiperidine) disulfide or bis(morpholinolino) disulfide 322 at 140 °C under nitrogen.109 This methodology is not restricted to electrophilic alkenes since it also works with terminal alkenes. A mechanism involving a 1,3-dipolar cycloaddition between carbon disulfide and a transient thietotocarbene was proposed (Scheme 91).
In 1979, Cava and co-workers suggested a modification of Hartzler’s procedure by adding a mixture of DMAD and tetrafluoroboric acid etherate, at –65 °C, to tributylphosphine–carbon disulfide complex. The thus-formed ylide was protonated and then trapped as its phosphonium salt, which was isolated in 72% yield. This salt proved to be of high synthetic value in 1,3-dithiole and tetrathiafulvalene chemistry, affording compounds such as the derivatives (Scheme 92). This general scheme was extended to the synthesis of diselenadithiafulvalene, the first step being a cycloaddition of DMAD to 2-thioxo-1,3-diselenolane. It was also used for the synthesis of tetraselenafulvalene from ethylene triselenocarbonate (Scheme 93).

Microwave-assisted regiospecific [2+2] cycloadditions of DMAD to derivatives, resulting in the formation of butadienes, were reported in 2008 (Scheme 96).

Moreover, the microwave-assisted [2+2] cycloaddition of DMAD to imidazolidine-2,4-dione, or to the corresponding thioxo derivative, in acetonitrile, produced the highly functionalized imidazolidine-2,4-dione derivatives and (Scheme 97).

Reactions of enamines of cyclic ketones with DMAD can be manipulated to achieve ring enlargement by a unit of two carbon atoms. The reactions proceed via [2+2] cycloaddition and subsequent ring opening of the intermediate cyclobutenes (Scheme 94). This becomes a valid strategy for constructing an extended π-conjugated system when applied to cyclic π-conjugated enamines. This method was also successfully used to achieve ring enlargements of thiophenes to thiepines, benzofurans to benzoepoxines, indoles to benzazepines and pentalenes to azulenes. Dipyridinyl-annulene reacted with an excess of DMAD in refluxing toluene to give ring-enlarged annulene (Scheme 95).
The reaction of the thiazole derivatives 339 with DMAD led unexpectedly to compounds 341, which resulted from a sequence of reactions initiated by a [2+2] cycloaddition of DMAD to the formal carbon–carbon double bond of the thiazole ring (Scheme 98).

Scheme 98

Sajna et al. 66 described the reaction of allenylphosphonate 342 with DMAD under neat conditions to afford compounds 343, 344 and 345 following a plausible [2+2] cycloaddition (Scheme 99).

3.4 [8+2] Cycloadditions

Orbital-symmetry-allowed [8+2] cycloadditions between tetraenes 346 and tetraenophiles 348, can in theory provide a straightforward approach for the synthesis of 10-membered-ring compounds. Before the year 2003, however, all of the reported [8+2] cycloadditions were limited to geometrically constrained tetraenes (such as heptafulvenes, tropones, and indolizines), in which the terminal carbons or heteroatoms at positions 1 and 8 were rigidly held in close proximity.

Kuznetsov et al. 117 reported that although 5-bromoindolizine 350 was found to be passive toward nucleophiles, its reaction with DMAD led to cycl[3.2.2]azine 351 in 87% yield, through an [8+2] cycloaddition (with HBr elimination). This [8+2] cycloaddition of dienophiles, across positions 3 and 5, is a well-known type of indolizine reactivity (Scheme 100).

In 2003, it was reported that dienylisobenzofurans 352 could react with DMAD to furnish, as the major products, [8+2] adducts possessing the 11-oxabicyclo[6.2.1]undecane ring system 353. 118 It was later noted that dienylfurans 354 could also participate in [8+2] cycloadditions with DMAD, affording compounds 355 (Scheme 101).

These [8+2] cycloadditions provided a direct approach for the synthesis of ring skeletons such as eleutherobin, briarellins and other natural products that have anticancer activity. Ten-membered-ring compounds with an oxygen bridge can also be readily synthesized through these [8+2] cycloadditions.

Roy and Ghorai 119 reported a one-pot three-component coupling of o-alkynylheteroaryl carbonyl derivatives 356.
with α,β-unsaturated Fischer carbene complexes and DMAD, leading to the synthesis of heterocyclic analogues. These reactions can be captured by suitable substrates (e.g., nucleophiles), after a series of transformations. In fact, it was found that in the case of acetylenedicarboxylate, three reaction paths are possible (paths A, B, and C). Basically, in both paths A and C the nucleophile is added irreversibly, leading to a multi-component reaction. On the other hand, in path B the nucleophile gets eliminated from the system, and thus plays a catalytic role, conducting a two-component reaction. Path B usually involves nucleophiles, such as phosphines and tertiary amines like pyridines and quinolines, while paths A and C involve mainly nucleophilic heterocyclic carbenes (NHCs) and isocyanides (Scheme 103).

Scheme 103

4 DMAD and the Generation of Zwitterions; Multicomponent Reactions (MCRs)

Zwitterions are transient intermediates formed by the addition of neutral nucleophiles to electrophilic receptors. Zwitterions are a unique tool in organic synthesis leading to a variety of heterocycles. These reactive intermediates can be captured by suitable substrates (e.g., nucleophiles), after a series of transformations. In fact, it was found that in the case of acetylenedicarboxylate, three reaction paths are possible (paths A, B, and C). Basically, in both paths A and C the nucleophile is added irreversibly, leading to a multi-component reaction. On the other hand, in path B the nucleophile gets eliminated from the system, and thus plays a catalytic role, conducting a two-component reaction. Path B usually involves nucleophiles, such as phosphines and tertiary amines like pyridines and quinolines, while paths A and C involve mainly nucleophilic heterocyclic carbenes (NHCs) and isocyanides (Scheme 103).

Scheme 102

4.1 Phosphines and Derivatives

The importance of organophosphoric compounds as reagents in organic synthesis and as transition-metal-catalyst ligands has been very actively studied and proven in organic laboratories in recent years. Particular attention has been paid, by synthetic researchers, to both the properties and the reactive behavior of phosphorus ylides in a multitude of applications in natural product synthesis, which is of course vital in biomedicinal chemistry and pharmaceutical design. Phosphorus ylides, endowed by unique electronic and molecular structures, are classed as special zwitterions, useful in diverse reactions. They are characterized by electron-rich carbanions, decisively nucleophilic; thus availing themselves to deployment as starting reagents in organic synthesis projects. Most importantly, phosphorus ylides are readily obtainable from abundantly available inexpensive reagents and have been correspondingly researched in depth with respect to their reactive properties and their potential in both reagent preparation and industrial-level organic synthesis. Ylide preparation usually involves the treatment of a phosphonium salt (normally from phosphine and an alkyl halide) with a base. Phosphines and DMAD in the presence of organic acids could also be used for the preparation of ylides (Scheme 104).120

Scheme 104

4.1.1 Reactions of Triphenylphosphine, DMAD and C–H Acids

There are many studies on the reaction between trivalent phosphorus nucleophiles and acetylenic esters in the presence of C–H acids. In some cases the ylide products are stable, but in other cases they cannot be isolated and appear to occur as intermediates on the pathway to an (eventually) observed product.

Stabilized phosphorus ylides have also been isolated from the related reactions of triphenylphosphine, DMAD and acyclic and cyclic 1,3-diketones. The reaction of DMAD with keto-nitriles led to the stabilized phosphorus ylides (Scheme 105).121

The reaction of trifluoro diones with DMAD, in the presence of triphenylphosphine, provided a simple one-pot reaction for the synthesis of polyfunctionalized trifluormethylated cyclobutene derivatives via an intramolecular Wittig reaction in high yield (Scheme 105).122

2-Acetylbutyrolactone underwent a smooth reaction with triphenylphosphine and DMAD to produce stabilized diastereomeric phosphorus ylides possessing two stereogenic centers. These compounds underwent in boil-
ing benzene, an intramolecular Wittig reaction to produce highly strained spiro compounds 366 which spontaneously underwent ring-opening to produce functionalized 1,3-dienes 367 (Scheme 105). On the other hand, 3,4-diacetylhexane-2,5-dione (368) in its reaction with DMAD, in the presence of triphenylphosphine, underwent a diastereoselective intramolecular Wittig reaction to produce the cyclopentene derivative 369 in good yield (Scheme 105).124

4.1.2 Reactions of Triphenylphosphine, DMAD and N–H Acids

Reaction of the reactive 1:1 intermediate adduct of triphenylphosphine and DMAD with 3-chloroindole-2-carbaldehyde (370) led to a vinylphosphonium salt which underwent an intramolecular Wittig reaction to produce the corresponding pyrrole derivative 372 (Scheme 106). Moreover, the reaction of the 1:1 triphenylphosphine–DMAD adduct with some other N–H acids delivered the corresponding pyrrole derivatives via an intramolecular Wittig reaction.

The reaction of arylsulfonamide derivatives of 2-amino-benzaldehyde 373, DMAD and triphenylphosphine produced dihydroquinoline derivatives 375 in excellent yields (Scheme 106). In addition, the DMAD–triphenylphosphine intermediate was trapped by ethyl 1H-pyrimidine-2-carboxylate 376 to the pyridine derivatives 377 and 378 in a nearly 7:1 ratio and overall good yields (Scheme 106).

4.1.3 Reactions of Triphenylphosphine, DMAD and O–H Acids

Johnson and Tebby established the intermediacy of a zwitterion in the reaction of triphenylphosphine with DMAD, which proved to form the basis of a wide variety of later transformations. These zwitterionic species were shown to undergo annulation reactions with electrophiles, such as aldehydes, α-keto nitriles, α-keto esters and N-tosylimines, to provide highly substituted unsaturated γ-lactones and lactams.

Recently, the reaction between DMAD and various aryl aldehydes in the presence of triphenylphosphine was reported, leading to unsaturated γ-butyrolactone derivatives 385 and highly substituted enones 386 in fairly good yields at room temperature (Scheme 107).

A series of triazene derivatives 380 with polyfunctional substituents, such as the ylide moiety and ester groups, were synthesized by the reaction of DMAD with 1,3-diaryl-1-triazenes 379 in the presence of triphenylphosphine in ethyl acetate (Scheme 106). A convenient synthesis of highly functionalized phosphorus ylides was achieved by the reaction of DMAD with N-phenylacetamides 381 in the presence of triphenylphosphine. The intramolecular cyclization of ylide 382 in toluene, at reflux, gave the pyrazole derivative 383 in a high yield (Scheme 106).

Scheme 105

![Scheme 105](image_url)
The reaction between arylglyoxal monohydrates 387, DMAD and triphenylphosphine led to the dihydrofuran derivatives 389 by a simple and efficient method (Scheme 108).\(^{133}\)

The one-pot reaction between ninhydrin 391, amide derivatives 390, DMAD and triphenylphosphine led to oxacyclopenta[α]indene derivatives 392 (Scheme 109).\(^{134}\)
Yavari et al.135 described a new and operationally convenient approach to the synthesis of 4-carboxymethylcoumarins based on the aromatic electrophilic substitution between the conjugate base of a substituted phenol and a vinyltriphenylphosphonium salt derived from the reaction of DMAD with triphenylphosphine. In this context, 4-carboxyalkyl-8-formyl coumarins 394 were synthesized from 2-hydroxybenzaldehydes 393 in good yields via vinyltriphenylphosphonium salt mediated electrophilic aromatic substitution. The salt was generated in situ by protonation of the reactive 1:1 intermediate produced by the reaction of triphenylphosphine and DMAD with the 2-hydroxybenzaldehyde (Scheme 110).136

Moreover, Symeonidis et al.137 reported the synthesis of linear [6,7]-fused coumarins 396, along with a minor product 397, which were obtained from the reaction of [3,4]-fused phenols 395 with DMAD and triphenylphosphine (Scheme 110). The synthesis of angular [7,8]-fused coumarins from the reaction of [2,3]-fused phenols with DMAD and triphenylphosphine was also reported.137

Novel spirocyclic lactones 399 and 401 were synthesized by Nair et al.131 who carried out a phosphine-mediated reaction of DMAD with \(o\)– and \(p\)-quinones 398 and 400. The zwitterion, not surprisingly, exhibited a complete preference for the quinone carbonyl group, leaving the enone double bond intact (Scheme 111).

4.1.4 Reactions of Triphenylphosphine, DMAD and S–H Acids

Stable crystalline phosphorus ylides 403 were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine and DMAD in the presence of 1-methylimidazole-2-thiol (402). These sulfur-containing phosphoranes 403 existed in solution as a mixture of two geometrical isomers, owing to restricted rotation around the carbon–carbon double bond resulting from conjugation of the ylide unit with the adjacent carbonyl group (Scheme 112).138

Analogously, the reaction of triphenylphosphine and DMAD in the presence of thiophenol derivatives 404 proceeded spontaneously, at room temperature, to produce stable phosphorus ylides 405 (Scheme 112).139 The reaction of some other strong S–H acids with DMAD, in the presence of triphenylphosphine, led to the corresponding phosphoranes.140

Crystalline phosphorus ylides 407 were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine, DMAD and N–H or S–H acids 406 such as 2-amino-4-phenylthiazole, 2-amino-5-(3-chlorobenzyl)thiadiazole, 3-amino-2-methylquinazolin-4-one and 3-amino-2-mercaptoquinazolin-4-one (Scheme 113).141

Scheme 110

Moreover, Yavari et al.135 described a new and operationally convenient approach to the synthesis of 4-carboxymethylcoumarins based on the aromatic electrophilic substitution between the conjugate base of a substituted phenol and a vinyltriphenylphosphonium salt derived from the reaction of DMAD with triphenylphosphine. In this context, 4-carboxyalkyl-8-formyl coumarins 394 were synthesized from 2-hydroxybenzaldehydes 393 in good yields via vinyltriphenylphosphonium salt mediated electrophilic aromatic substitution. The salt was generated in situ by protonation of the reactive 1:1 intermediate produced by the reaction of triphenylphosphine and DMAD with the 2-hydroxybenzaldehyde (Scheme 110).136

Scheme 111

Crystalline phosphorus ylides 407 were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine, DMAD and N–H or S–H acids 406 such as 2-amino-4-phenylthiazole, 2-amino-5-(3-chlorobenzyl)thiadiazole, 3-amino-2-methylquinazolin-4-one and 3-amino-2-mercaptoquinazolin-4-one (Scheme 113).141
4.1.5 Reactions of Triphenylphosphine, DMAD and Oxa- or Azadienes

Waldmann and co-workers,142 wishing to synthesize compound collections inspired by natural products for chemical biology and medicinal chemistry research, developed an enantioselective triphenylphosphine- or tributylphosphine-organocatalyzed asymmetric [4+2] annulation between electron-deficient heterodiienes and acetylene derivatives. By using 3-formylchromones 408, DMAD and triphenylphosphine (up to 30 mol%), tricyclic benzo-pyrones 409 (X = O) were isolated in high yields; these were further used for an efficient synthesis of tetrahydro-indolo[2,3-a]quinolizidines (centrocountins). Analogously, from the reaction of 3-formylchromone N-tosylimines 408 (X = NTs) the tricyclic products 409 (X = NTs) along with the hydroxybenzoylpyridines 410 were formed. Finally, the reaction of acyclic electron-poor oxadienes 411 with DMAD and triphenylphosphine was also studied, whereupon the initially detected [4+2]-annulation products underwent a subsequent Claisen rearrangement to yield dehydropyrans 412 (Scheme 114).

4.1.6 Reactions of Phosphine Derivatives with DMAD

The nucleophilic addition of trialkyl phosphites to electron-deficient triple bonds led to highly reactive zwitterionic intermediates, which could be trapped by various electrophiles. Phosphonate esters are an important class of compounds obtained by the sequential addition reaction of trivalent phosphite with α,β-unsaturated carbonyl molecules in the presence of C–H or N–H acids. Synthesis of phosphonato esters 414 and 415 was accomplished via reaction between DMAD and triphenylphosphite in the presence of biological compounds 413 such as theophylline, 4-hydroxypyrimidine, 2H-3,1-benzoxazine-2,4(1H)-dione, 2-chloroaniline or 3-nitroaniline at ambient temperature (Scheme 115).143,144

Scheme 113

\[
\text{N}^+\text{Ph}_3\text{P} \quad \text{MeO}_2\text{C} \quad \text{PPh}_3 \quad \text{CO}_2\text{Me} \quad \text{DMAD} + \text{EtOAc} \quad 87\% \]

Scheme 113

Scheme 114

\[
\begin{array}{c}
\text{Ph} \quad \text{MeO}_2\text{C} \quad \text{PPh}_3 \quad \text{CO}_2\text{Me}
\end{array}
\]

408

\[
\begin{array}{c}
\text{R}^1 = \text{H, Me, i-Pr}
\text{R}^2 = \text{H, OEt}
\text{R}^3 = \text{H, Me}
\text{X} = \text{O, NTs}
\end{array}
\]

409

60–90% when X = O
41–61% when X = NTs

6 steps

410

22–35%

60–90% when X = O
41–61% when X = NTs

9 steps

411

\[
\begin{array}{c}
\text{R}^1 = \text{H, Et}
\text{R}^2 = \text{Br, Ac, Et}
\text{R}^3 = \text{H, CO}_2\text{Me}
\end{array}
\]

412

54–68%

\[
\begin{array}{c}
\text{MeO}_2\text{C} \quad \text{CO}_2\text{Me}
\end{array}
\]

3-formylchromones

408, DMAD and triphenylphosphine (up to 30 mol%), tricyclic benzo-pyrones 409 (X = O) were isolated in high yields; these were further used for an efficient synthesis of tetrahydro-indolo[2,3-a]quinolizidines (centrocountins). Analogously, from the reaction of 3-formylchromone N-tosylimines 408 (X = NTs) the tricyclic products 409 (X = NTs) along with the hydroxybenzoylpyridines 410 were formed. Finally, the reaction of acyclic electron-poor oxadienes 411 with DMAD and triphenylphosphine was also studied, whereupon the initially detected [4+2]-annulation products underwent a subsequent Claisen rearrangement to yield dehydropyrans 412 (Scheme 114).

4.1.6 Reactions of Phosphine Derivatives with DMAD

The nucleophilic addition of trialkyl phosphites to electron-deficient triple bonds led to highly reactive zwitterionic intermediates, which could be trapped by various electrophiles. Phosphonate esters are an important class of compounds obtained by the sequential addition reaction of trivalent phosphite with α,β-unsaturated carbonyl molecules in the presence of C–H or N–H acids. Synthesis of phosphonato esters 414 and 415 was accomplished via reaction between DMAD and triphenylphosphite in the presence of biological compounds 413 such as theophylline, 4-hydroxypyrimidine, 2H-3,1-benzoxazine-2,4(1H)-dione, 2-chloroaniline or 3-nitroaniline at ambient temperature (Scheme 115).143,144

Scheme 115

Adib et al.145 described an efficient and chemoselective sulfonamide N-alkylation of sulfonyl ureas. The sulfonyl urea derivatives, prepared in situ by the addition of an ar-
omatic amine 416 to an arylsulfonyl isocyanate 417, were selectively alkylated to give 418 in excellent yields under neutral and mild conditions by treatment with trialkyl phosphite–DMAD at ambient temperature (Scheme 116).

A three-component reaction between DMAD and trialkyl phosphites in the presence of N-aryl-3-hydroxynaphthalene-2-carboxamide 419 led to dialkyl 2-(dimethoxyphosphoryl)-3-[2-hydroxy-3-(arylcarbamoyl)naphthalen-1-yl] succinates 420 in excellent yields (Scheme 116).146

Protonation of the reactive intermediate produced in the reaction between trialkyl(aryl) phosphites and DMAD by C–H acids 421 such as indane-1,3-dione and N,N′-dimethylbarbituric acid, led to functionalized phosphonates 422 in good yields (Scheme 116).146

Deng et al.147 reported the synthesis of aryl-substituted γ-lactones 425 bearing an α-phosphorus ylide moiety, in moderate to good yields, through the assembly of DMAD, electron-deficient aldehydes 423, and triaryl- or trialkyl-phosphanes (Scheme 117).

Scheme 116

The reaction of dihydroporphosphate 428 with an excess of DMAD was found to give the ring-expanded product 429 (Scheme 118).149a fully characterized by X-ray crystal structure analysis. A similar rearrangement was proposed in the case of 1-phenyl-3,4-dimethylphosphole (430)149b yielding the ring-expanded product 431. However, fairly recently Duan et al.149c reinvestigated the reaction and established the formation of the stable ylide 432.

Scheme 117

A new class of phosphorus-ylide containing conjugate heterocycles was isolated from a mixture of colored products of the reaction of a silylphosphine 426 and DMAD. The indigo-like bis-phosphole structure 427 appeared with a green to blue color because of the low energy gap of the phosphole (Scheme 118).148

Scheme 119
4.2 Amines

4.2.1 Reactions of Primary Aromatic or Aliphatic Amines

Although not quite as productive as phosphine catalysis, amines can also initiate various transformations by generating zwitterionic intermediates from activated olefins and acetylenes.

A protocol has been developed for the efficient synthesis of structurally diverse 3,4-dihydropyridin-2(1H)-ones and 3,4-dihydro-2H-pyran catalysts by boron trifluoroethoxy etherate in acetonitrile (Scheme 122).\(^{152}\)

The 1,4-dihydropyridines were further used for the synthesis of fused-naphthyridine derivatives and aromatic aldehydes catalyzed by boron trifluoroethoxy ethyl etherate in acetonitrile (Scheme 122).

In addition, a practical and efficient procedure for the preparation of the polystyrene bromoester 440 was developed through a unique four-component reaction of aromatic aldehydes, nitriles, arylamines and DMAD (Scheme 120).\(^{151}\)

A facile and efficient synthesis of tetrasubstituted 1,4- and 1,6-dihydropyridines was achieved by employing a three-component domino reaction using DMAD, aliphatic amines and the presence of trifluoroacetic acid. Interestingly, regioselectivity in the synthesis of 1,4-dihydropyridines was increased by using triflic acid (Scheme 121).\(^{152}\)

Polyethylene glycol (450) and iron(III) chloride were found to be an inexpensive, non-toxic and effective medi-
um and catalyst, respectively, for the one-pot synthesis of highly functionalized pyrroles using bromides, amines and DMAD. Utilizing this protocol, various pyrrole derivatives were synthesized in excellent yields. Environmental acceptability, low cost, high yields and the recyclability of the polyethylene glycol are the important features of the protocol (Scheme 123).153a,b

Scheme 123

The four-component reaction of DMAD, aromatic aldehydes, benzyamines and malononitrile led to polyfunctionalized 1,4-dihydropyridine derivatives (Scheme 124).154

Scheme 124

4.2.2 Reactions of Tertiary Amines

Stereoselective reaction of various substituted phenols with DMAD, in the presence of a catalytic amount of an aqueous solution of a trialkylamine in dichloromethane, led to dimethyl 2-phenoxymaleates in good to excellent yields under mild conditions (Scheme 125).155

The 1,4-dipole derived from 4,5-dimethylthiazole and DMAD was shown to react readily with chromone-3-carboxaldehydes, resulting, after an unusual rearrangement, in the facile synthesis of thiazolo[3,2-a]pyridine derivatives. In some instances, tetracyclic chromenothiazolopyridines were formed (Scheme 126).156

Pyridines and quinolines generally deserve special attention owing to the variety of transformations that mediate. Following the observations made by Diels and Alder of the reaction of pyridine with DMAD (affording derivatives and), Huisgen was successful in intercepting the 1,4-dipole with phenyl isocyanate, leading to a pyrimidinedione derivative with eventual elimination of pyridine during the course of the reaction (Scheme 127).157b

Scheme 125

Scheme 126

Scheme 127
The 1,4-zwitterionic intermediate generated from pyridine and DMAD was added to aldehydes in a formal [2+2] manner, resulting in the facile synthesis of 2-oxo-3-benzylidene succinates (Scheme 128).157c Pyridine catalyzed the reaction of 1,2-diaryl diones with DMAD to afford diaroyl maleates. This unprecedented rearrangement involved a unique benzoyl migration and proceeded with complete stereoselectivity (Scheme 128).158

In 2009, an efficient synthesis of the 2H-pyridinyl-2-butenedioate was described via the reaction of dimethyl methoxymalonate (475) and DMAD in the presence of a nitrogen nucleophile (Scheme 128).159 Maghsoudlou et al.160 reported a three-component reaction between aromatic ketones and DMAD to afford diaroyl maleates 474. This unprecedented rearrangement involved a unique benzoyl migration and proceeded with complete stereoselectivity (Scheme 128).158

A route towards stereoselective and regioselective halogenated pyrido[2,1-b][1,3]oxazines 481 in high yields was recently described by Asghari et al.161 The products were isolated in moderate to excellent yields through a three-component reaction involving pyridines, DMAD and different α-halo ketones (Scheme 130).

The pyridine-mediated reaction of DMAD and cyclobutene-1,2-diones afforded selective access to either hexasubstituted benzene derivatives or cyclopentenedione derivatives, depending on the concentration of pyridine (Scheme 131).162 Terzidis et al.163 reported an efficient synthesis of functionalized benzophenones, polysubstituted xanthones or pyranochromenes through the reaction of chromones and DMAD catalyzed by a pyridine derivative (4-picoline or DMAP). The outcome of the reactions was found to depend on both the nature of the chromone substituents and the basicity of the organocatalyst (Scheme 132). Pyranochromenes were also isolated by using DABCO or β-isooquinidine as organocatalysts.142

Scheme 128

Scheme 129

Scheme 130
Quinoline is widely known to form a 1,4-zwitterion with DMAD, which can be trapped by various dipolarophiles such as compounds 489, 491, 493, 495 and 497 to yield a variety of pyridoquinoline and oxazinoquinoline derivatives including 490, 492, 494, 496 and 498 and 499 (Scheme 133).164

The reaction of isoquinoline (500) with two equivalents of DMAD was originally developed by Diels and Alder in 1933. The reaction proceeded through the zwitterionic intermediate 501, which then underwent a domino Michael addition and Mannich reaction with a second equivalent of DMAD to afford benzoquinolizine 502 (Scheme 134).164b

In 1967, Huisgen et al.165 reported three multicomponent variations of this reaction in which intermediate 501 was trapped with several different dipolarophiles, including dimethyl azodicarboxylate (503), diethyl mesoxalate (505) and phenyl isocyanate (507), to form the tricyclic scaffolds 504, 506 and 508, respectively (Scheme 134).

Later, some more examples were reported by Nair et al.,166–168 who used benzoquinone 509 and arylidenemalononitriles 511 to obtain the spiro-isoquinoline 510 and tetrahydrobenzoquinolizine derivatives 512, respectively (Scheme 134).

More recently, Yavari et al.169 reported a new three-component reaction in which intermediate 501 was trapped with aroylnitromethanes 513 to give pyrroloisoquinolines 514 (Scheme 134).170

Multicomponent reactions involving azines [isoquinoline (500; Scheme 135) or phenanthridine (524; Scheme 136)] and DMAD were executed in the presence of heterocyclic N–H compounds (indole, methylindole, 3,6-dibromocarbazole) or 1,3-dicarbonyl compounds (N,N-dimethylbarbituric acid, 1,3-diethyl-2-thiobarbituric acid, acetylacetone, 1,3-diphenylpropane-1,3-dione, cyclopentane-1,3-dione) 515 to generate enamino esters 516 and 526 in good yields.171,172

Isoquinoline reacted smoothly with DMAD in the presence of amides 517 to produce the derivatives 518 (Scheme 135).173

The 1,4-dipole derived from isoquinoline and DMAD was also shown to react readily with N-tosylimines 519, resulting in the diastereoselective synthesis of 2H-pyrimido[2,1-a]isoquinoline derivatives 520 (Scheme 135).167

Moreover, the reaction of isoquinoline 500 and DMAD with benzoquinone 521, at room temperature, afforded the spiro-oxazino isoquinoline derivatives 522 and 523 as a mixture of regioisomers in a 2:1 ratio and 91% yield (Scheme 135).168

Li et al.174 described an efficient synthesis of [1,3]oxazino[3,2-f]phenanthridine derivatives 525 via a three-
Scheme 133

Scheme 134
component reaction of phenanthridine 524, DMAD and aromatic aldehydes (Scheme 136).

The reaction of 3-methylisoquinoline (527) with chromone-3-carboxaldehydes 459 and DMAD to produce chromenopyridoisoquinoline dicarboxylates 528 was also studied (Scheme 137). Safaei et al. reported a novel, facile and environmentally benign one-pot three-component synthesis of pyrazolines 530 from arylaldehydes, hydrazines 529 and DMAD.

Scheme 135

Scheme 136

Scheme 137
with excellent yields and diastereoselectivities using a bi-functional Brønsted acidic ionic liquid as a safe, inexpensive and reusable catalyst under solvent-free conditions (Scheme 138).

Scheme 138

4.3 Isocyanides

Hundreds of multicomponent reactions have been described over the years. Isocyanide-based multicomponent reactions (IMCRs) constitute a special subclass. They are particularly interesting because they are more versatile and diverse than the other multicomponent reactions. The great potential of isocyanides for the development of multicomponent reactions lies in the diversity of bond-forming processes available, their functional group tolerance and the high levels of chemo-, regio- and stereoselectivity often observed. The outstanding position of IMCRs can be traced back to the exceptional reactivity of the functional group of the isocyanides. No other functional group reacts with both nucleophiles and electrophiles on the same atom, leading to the so-called R-adduct. Winterfeldt et al. were the first to describe the reactions of DMAD with isocyanides in their pioneering work published in 1969.\(^{177a}\) A large number of IMCRs were described by Dömling in his reviews.\(^{177b,c}\)

4.3.1 Synthesis of Five-Membered Heterocycles with One Heteroatom

4.3.1.1 Nitrogen-Containing Heterocycles

The zwitterion generated by the addition of alkyl(aryl) isocyanides 531 to DMAD was trapped by benzoyl chloride (532) to yield functionalized 2,5-dihydro-1H-pyrroles 533 (Scheme 139). However, in the presence of electron-withdrawing groups at the para-position of the benzoyl chloride, tetrasubstituted furans 534 were isolated instead.\(^{178}\)

The 1:2 zwitterion, generated by the addition of triphenylphosphine to DMAD, was protonated by trifluoroacetic acid and subsequently attacked by isocyanide and water in a pseudo-seven-component diastereoselective reaction giving compounds 535 with three stereogenic centers and a phosphorane group in good yields (Scheme 140).\(^{179}\)

Scheme 140

The three-component reaction of the zwitterion generated from DMAD and isocyanides with various quinoneimides such as 536 and 538 afforded the corresponding γ-spiroimino lactams 537 and 539 in good yields (Scheme 141).\(^{180}\)

4.3.1.2 Oxygen-Containing Heterocycles

In 2004, the three-component reaction of cyclohexyl isocyanide with DMAD and various aromatic or aliphatic aldehydes 540 was reported to have gone to completion in less than two hours when carried out in ionic liquids, affording the expected heterocycles 542 in high yields.\(^{181}\) Water was reported as a novel reaction medium for the synthesis of highly functionalized 2-amino furan derivatives 542, via the coupling of aldehydes 540, with DMAD and cyclohexyl isocyanide (Scheme 142).\(^{182}\) 3-Aromatic aldehydes\(^{183a}\) formylindoles\(^{183b}\) and quinoline-3-carbaldehydes\(^{183c}\) were also found to undergo smooth condensation with the zwitterions derived from isocyanides and DMAD either in benzene or in acetonitrile to give the corresponding furanyl derivatives in good yields.
In addition, the reaction of 1:1 zwitterionic intermediates generated in situ from either tert-butyl isocyanide or cyclohexyl isocyanide and DMAD with 3-formylchromones was reported to lead to chromenyfurandicarboxylates or to cyclopenta[b]chromenedicarboxylates, depending on the nature of the chromone 6-position substituent (Scheme 143). The reaction of alkyl isocyanides with DMAD, in the presence of pyridine-containing carbonyl compounds or , led to the stable products or in excellent yields (Scheme 144). The reaction of DMAD and isocyanides with vicinal tricarbonyl systems and produced highly substituted furan derivatives and respectively, whereas when the diphenyl trikette was used, the pyran derivative was the only reaction product (Scheme 145).This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
interception with 3,5-di-tert-butyl-1,2-benzoquinone (565), yielded a regioisomeric mixture of spiroiminolactones 566 and 567 reacting exclusively with the carbonyl functionalities of the quinone (Scheme 146).190

Nair et al.191 found that DMAD could be induced to add itself to the most electron-deficient carbonyl of various benzoquinones in the presence of some nucleophilic initiator, such as triphenylphosphine or an isonitrile. In particular, benzoquinone 568 underwent cyclization in the presence of cyclohexyl isocyanide and DMAD to afford the iminolactone 569 in 92% yield (Scheme 146).192

Isocyanides reacted smoothly with DMAD in the presence of hexachloroacetone (570) to produce the furan derivatives 571 in high yields (Scheme 147).193

Benzoyl chlorides 572 with electron-withdrawing substituents at the para-position led to tetrasubstituted furans 573 (Scheme 147).178

A three-component condensation reaction between an isocyanide, DMAD and 2-bromo-1-(4-bromophenyl)ethanone (574) efficiently provided fully substituted iminolactones 575 in high yields in a one-pot condensation reaction without any activation or modification (Scheme 147).194

A new and efficient method for preparing electron-poor imides 577 and fully substituted furans 578 from triphenylphosphine, 1,1,3,3-tetramethylbutyl isocyanide, DMAD and benzoic acid (576) under neutral conditions has been reported (Scheme 147).195

The reaction between alkyl(aryl) isocyanides, DMAD and alkyl cyanoformates 579 under solvent-free conditions led to furan derivatives 580 in high yields (Scheme 147).196

The highly reactive 1:1 adducts produced from the reaction between DMAD and alkyl isocyanides were trapped by benzoyl cyanoformates 581 to afford furan derivatives 582 in good yields (Scheme 147).197

4.3.2 Synthesis of Six-Membered Heterocycles with One Heteroatom

4.3.2.1 Nitrogen-Containing Heterocycles

A three-component condensation reaction between an isocyanide, DMAD and triphenylphosphonium bromide 583 efficiently provided fully substituted N-alkyl-2-triphenylphosphoranylidene glutarimides 584 in a one-pot reaction without any activation (Scheme 148).198
Li et al.199 reported a facile, efficient and regioselective synthetic approach for the construction of highly substituted pyridine-2(1\textsubscript{H})-ones 586 and allenyl derivatives 587. Their synthesis involved a one-pot three-component reaction between \textit{N}-arylidene-2-cyanoacetohydrazides 585, DMAD and isocyanides (Scheme 149).

4.3.2.2 Oxygen-Containing Heterocycles

Functionalized dihydroindenopyrans 589 were synthesized from the reaction of alkyl(aryl) isocyanides, DMAD and indane-1,3-dione (588; Scheme 150).200

\textbf{Scheme 148}

\textbf{Scheme 149}

\textbf{Scheme 150}

© Georg Thieme Verlag Stuttgart · New York
Synthesis 2014, 46, 537–585
Fused heterocycles were prepared in a one-pot three-component reaction of alkyl isocyanide, DMAD and α-tropolone (590). The reaction proceeded smoothly at room temperature and under neutral conditions to afford tropolone derivatives 591 in good to high yields (Scheme 150).201

Chemoselective reaction of isocyanides with DMAD in the presence of relatively strong cyclic C–H acids 592, such as 4-hydroxy-6-methyl-2H-pyran-2-one or 4-hydroxycoumarin, led to a facile synthesis of highly functionalized chromeno or pyrano derivatives 593, respectively, in good yields (Scheme 150).202

A three-component reaction of an isocyanide, DMAD and tetronic acid (594) in dichloromethane at room temperature afforded 4H-furo[3,4-b]pyran derivatives 595 (Scheme 150).203

The reaction between alkyl or aryl isocyanides and DMAD with 3-hydroxy-1H-phenalen-1-one produced a vinylisonitrilium cation, which subsequently underwent an addition reaction with the conjugate base of the 3-hydroxy-1H-phenalen-1-one to produce biologically interesting compounds 597 in moderate to fairly good yields (Scheme 150).204

The reaction between 2,6-dimethylphenyl isocyanide, 1,3-cyclohexanediones 598 and DMAD provided a simple one-pot entry into the synthesis of polyfunctional 4H-chromene derivatives 599 (Scheme 150).205

A three-component reaction of isocyanides, DMAD and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one 600 led to the synthesis of fully substituted pyrano[2,3-c]pyrazole derivatives 601 (Scheme 150).206

Pyrano-pyrido quinoxaline derivatives 603 were synthesized in good yields by a three-component reaction of isocyanides, DMAD and pyrido[1,2-a]quinoxalinetriones 602 in N,N-dimethylformamide at 100 °C (Scheme 150).207

4.3.3 Synthesis of Six-Membered Heterocycles with Two Heteroatoms

4.3.3.1 Nitrogen-Containing Heterocycles

Reaction of alkyl isocyanides, DMAD and dimethylurea (604) in glucose provided novel 2,6-dioxohexahydropyrimidines 605 (Scheme 151).208

A one-pot, three-component synthesis of pyrimidine derivatives 607, from the reaction of isocyanides, DMAD and N-(2-heteroaryl)amides 606, was also reported (Scheme 151).209

A three-component reaction of isocyanides, DMAD and N-(2-pyridyl)amides 608 led to the synthesis of the corresponding 4H-pyrido[1,2-a]pyrimidines 609 (Scheme 151).210

The one-pot, three-component condensation reaction of alkyl isocyanides with DMAD in the presence of phthalhydrazide 610 was successfully applied to the synthesis of compounds 611 (Scheme 151).211

Scheme 151
4.4 Carbenes

Over the past half-century and specifically ever since Bre-slow’s original demonstration of the role of thiazole carbenes as nucleophilic catalysts in enzymatic reactions,212 the intensive studies of N-heterocyclic carbenes (NHCs) as reaction intermediates by Wanzlick213 and the first isolation of stable diaminocarbene by Arduengo and co-workers in 1991,214 these species have attracted considerable attention. Their role as excellent ligands for transition metals215 and their ability to catalyze various carbon–carbon coupling reactions, namely benzoin condensation, transesterification216 and Stetter reaction,217 have contributed significantly to the tremendous interest in N-heterocyclic carbenes.

A straightforward preparation of 3-aminofuran derivatives 614 via multicomponent reactions of thiazole carbenes 612, aldehydes 613 and DMAD was reported. In this process, the thiazole carbenes, generated in situ from thiazolium salts, reacted with aldehydes and DMAD to afford the substituted furans 614 in moderate to good yields.

Eight substituted thiazolium salts were employed as carbene precursors in the reaction. In addition to aryl aldehydes, α,β-unsaturated aldehydes 615 were also investigated and found to be applicable to this reaction (Scheme 152).218

A three-component synthesis of the unique polysubstituted furan-fused 1,4-thiazepines 618 from thiazolium salts 612, 1,1-disubstituted ketenes 617 and DMAD was also reported (Scheme 152).219

Nair et al.220 described the reaction of carbenes 620 with DMAD and aromatic aldehydes 619, which proceeded smoothly to deliver four-component acyclic adducts 621 in good yields (Scheme 153).

1-Thiocarbamoylimidazo[1,5-a]pyridinium inner salts 624, which were obtained readily from the addition of the C,N-substituted heterocyclic carbenes, imidazo[1,5-a]pyridin-1-ylidenes 622, to isothiocyanates 623, are powerful ambident nucleophilic zwitterions. When treated with DMAD, they behaved exclusively as sulfur nucleophiles to afford fully substituted thiophenes 625 in excellent yields, providing an efficient orthogonal synthesis of polyfunctionalized thiophenes not easily obtained by other chemical means (Scheme 154).221

Pan et al.222 reported a multicomponent reaction using both N-heterocyclic carbenes and substituted phthalaldehydes. The imidazo[1,5-a]pyridine carbenes 626 reacted with phthalaldehydes 627 and DMAD to produce diastereomeric benzo[d]furo[3,2-b]azepine derivatives 628 and 629. The carbene underwent a nucleophilic addition to the phthalaldehyde to form a dipolar intermediate which then underwent [3+2] cycloaddition with DMAD (Scheme 155).
4.5 Miscellaneous Reactions

Chaniyara et al.,223 in continuation of their research into new bifunctional DNA-crosslinking agents for antitumor application, used benzothiazole derivative 630 and DMAD in order to gain access to diesters 631 and ultimately, after two steps, to the bis(alkylcarbamate) derivatives 632 for antitumor studies (Scheme 156).

In 2011, an efficient synthesis of iminothiopyran and iso-thiochromene derivatives 635 and 637, via one-pot reactions between DMAD, aryl isothiocyanates 633 and enaminones 634 and 636 in dichloromethane at room temperature, was described (Scheme 157).224

The zwitterion formed by the reaction of dimethoxycarbene and DMAD added efficiently to one of the carbonyl groups of 1,2-dicarbonyls and anhydrides to generate dihydrofurans and spirodihydrofurans 639–642 in good yields. In many cases, the carbene is inserted into the carbon–carbon bond of the dione to yield masked vicinal tricarbonyl systems (Scheme 158).225

Ding et al.226 reported a 1-methylimidazole-catalyzed reaction of DMAD with in situ generated ketenes by the action of Hunig’s base on acyl halides (Scheme 159).

Scheme 154

Scheme 155

Scheme 156

Scheme 157
5 Conclusion

In conclusion, we have presented here an overview of the recent progress in the chemistry of DMAD as a unique reagent with significant application in organic synthesis and medicinal chemistry. It also plays a pivotal role in many diverse synthetic pathways. The high synthetic potential of this very accessible reagent has resulted in numerous applications, especially for the synthesis of complex heterocyclic structures. The increasing number of citations clearly shows the great importance of this simple but powerful reagent, and it is believed that additional new and useful DMAD chemistry will be discovered in the future.

References

(1) Sahoo, M. K. Synlett 2007, 2142.
(87) Trofimov, B. A.; Sobenina, L. N.; Demenev, A. P.;
(a) Diver, S. T.; Giessert, A. J.
Chem. Rev. 1987, 87, 47.
(b) Brennen, J. B.; Martin, S. F.

(88) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(90) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(91) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(92) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(93) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(94) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(95) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(96) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(97) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(98) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(99) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(100) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(101) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(102) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(103) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.

(104) (a) Sha, C. K.; Liu, J. M.; Chiang, R. K.; Wang, S. L.
(b) Washizuka, K. I.; Nagai, K.; Nagai, K.; Minakata, S.;
Ryu, I.; Komatsu, M.; Herndon, J. W.; Yu, Z. X.