Synlett 2014; 25(5): 671-676
DOI: 10.1055/s-0033-1340554
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Hydrogenation of Alkenes and Alkynes with Hydrazine in the Presence of Oxygen

Nurettin Menges
a   Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey, Fax: +90(312)2103200   Email: mbalci@metu.edu.tr
b   Faculty of Pharmacy, Yüzüncüyil University, 65080 Van, Turkey
,
Metin Balci*
a   Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey, Fax: +90(312)2103200   Email: mbalci@metu.edu.tr
› Author Affiliations
Further Information

Publication History

Received: 11 November 2013

Accepted after revision: 09 December 2013

Publication Date:
13 January 2014 (online)


Abstract

A series of alkenes and alkynes was subjected to reduction with hydrazine hydrate in ethanol in the presence of oxygen. An efficient method was developed for the reduction of C–C double bonds and C–C triple bonds with diimide, generated in situ from hydrazine hydrate by oxidation with oxygen. The reduction process proceeded for 24–48 hours with high chemoselectivity and excellent yields. This reduction procedure offers synthetic advantages over metal-catalyzed hydrogenation as well as other systems.

 
  • References and Notes

  • 1 Mattson B, Foster W, Greimann J, Hoette T, Le N, Mirich A, Wankum S, Cabri A, Reichenbacher C, Schwanke E. J. Chem. Educ. 2013; 613 ; and references therein
  • 2 Bond G. Metal Catalysed Reactions of Hydrocarbons. Springer; New York: 2005
  • 3 Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. John Wiley & Sons; New York: 2001
    • 4a Cui X, Burguess K. Chem. Rev. 2005; 105: 3272
    • 4b Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2007
    • 5a Kollar L, Keglevich G. Chem. Rev. 2010; 110: 4257
    • 5b Alonso F, Riente P, Yus M. Tetrahedron 2009; 65: 10637
  • 6 Furst A, Berlo RC, Hooton S. Chem. Rev. 1965; 65: 51
  • 7 Zhang Y, Chakraborty M, Cerda-Smith CG, Bratton RN, Maurer NE, Senser EM, Novak M. J. Org. Chem. 2013; 78: 6992
  • 8 Huang L, Luo P, Pei W, Liu X, Wang Y, Wang J, Xing W, Huang J. Adv. Synth. Catal. 2012; 354: 2689
  • 9 Nozaki A, Kamegawa T, Ohmichi T, Yamashita H. ChemPhysChem 2013; 14: 2534
  • 10 Imada Y, Kitagawa T, Ohno T, Iida H, Naota T. Org. Lett. 2010; 12: 32
    • 11a Imada I, Iida H, Kitagawa T, Naota T. Chem. Eur. J. 2011; 17: 5908
    • 11b Lamani M, Guralamata RS, Prabhu KR. Chem. Commun. 2012; 48: 6583
  • 12 Kleinke AS, Jamison TF. Org. Lett. 2013; 15: 710
    • 13a Hünig S, Müller HR, Thier W. Angew. Chem. Int. Ed. 1965; 4: 271
    • 13b Miller EC. J. Chem. Educ. 1965; 42: 254
  • 14 Cusack NJ, Reese CB, Risius AC, Roozpeikar B. Tetrahedron 1976; 32: 2157
  • 15 Haukaas MH, O’Doherty GA. Org. Lett. 2002; 4: 1771
  • 16 Hünig S, Müller HR. Angew. Chem. 1962; 74: 215
  • 17 Van Tamelen EE, Dewey RS, Lease MF, Pirkle WH. J. Am. Chem. Soc. 1961; 83: 4302
  • 18 Sutbeyaz Y, Secen H, Balci M. J. Org. Chem. 1988; 53: 2312
    • 19a Balci M. Chem. Rev. 1981; 81: 91
    • 19b Coughlin DJ, Brown RS, Salomon RG. J. Am. Chem. Soc. 1979; 101: 1533
    • 19c Adam W, Eggelte HJ. J. Org. Chem. 1977; 42: 3987
  • 20 Falciola P, Mannino A. Ann. Chim. Appl. 1914; 2: 351
  • 21 Cross BE. J. Chem. Soc. 1960; 3022
  • 22 Corey EJ, Mock WL, Pasto DJ. Tetrahedron Lett. 1961; 347
  • 23 Chen H, Wang J, Hong X, Zhou H.-B, Dong C. Can. J. Chem. 2012; 90: 758
  • 24 Garbish EW. Jr, Schildtcrout SM, Patterson DP, Sprecher CM. J. Am. Chem. Soc. 1965; 87: 2932
  • 25 Simakova IL, Solkina Y, Deliy I, Warna J, Murzin DY. Appl. Catal., A 2009; 356: 216
  • 26 Mirsadeghi S, Rickborn B. J. Org. Chem. 1985; 50: 4340
  • 27 Wu H, Hintermann L. Synthesis 2013; 45: 888
  • 28 Broggi J, Jurcik V, Songis O, Poater A, Cavallo L, Slawin AM. Z, Cazin CS. J. J. Am. Chem. Soc. 2013; 135: 4588
  • 29 Balci M. Basic 1H and 13C NMR Spectroscopy . Elsevier; Amsterdam: 2005: 330
  • 30 Reynolds WF, Peat IR, Hamer GK. Can. J. Chem. 1974; 52: 3415
  • 31 Procedure for hydrogenation: A round-bottom flask was charged with alkene or alkyne (1 mmol) and EtOH (1 mL) [except for cinchonine (3 mL) because of its lower solubility]. To this mixture was added hydrazine monohydrate (4 mmol), then the reaction was placed under an atmosphere of oxygen (balloon). The resulting mixture was stirred at 35 °C for the appropriate time. After consumption of the starting material, the solvent was removed under vacuum and the residue was extracted with EtOAc. The organic phase was dried over MgSO4 (for isolated products). Volatile products were not isolated and they were analyzed directly by using GC-MS. 1,2,3,4-Tetrahydro-1,4-epoxynaphthalene (16):26 1H NMR (400 MHz, CDCl3): δ = 7.16–7.13 (m, AA′ of AA′BB′, 2 H), 7.09–7.06 (m, BB′ of AA′BB′, 2 H), 5.32 (dd, J = 3.0, 1.8 Hz, 2 H), 2.01–1.95 (m, AA′ of AA′BB′, 2 H), 1.32–1.27 (m, BB′ of AA′BB′, 2 H). 13C NMR (100 MHz, CDCl3): δ = 145.6, 126.5, 118.7, 78.9, 26.6. (1E,2E)-1,2-Bis[(1-propyl-1H-Pyrrol-2-yl)methylene]hydrazine (29): Obtained as a pale-orange viscous liquid that was recrystallized from MeOH to give a yellow powder (mp 59–60.5 °C). Isolated yield: 89%. 1H NMR (400 MHz, CDCl3): δ = 8.40 (br, 2 H), 6.75 (app. t, J = 2.1 Hz, 2 H), 6.56 (br s, 2 H), 6.11 (dd, J = 3.7, 2.6 Hz, 1 H), 4.24 (t, J = 7.2 Hz, 4 H), 1.75 (hext, J = 7.2 Hz, 4 H), 0.85 (t, J = 7.2 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 150.4, 126.5, 125.9, 116.1, 107.4, 49.2, 23.3, 9.7; IR: 2957, 2921, 2856, 1619, 1522, 1460, 1416, 1402, 1368, 1295, 1213, 1065. HRMS: m/z [M + H]+ calcd for C16H23N4: 271.1923; found: 271.1905. 1-(1-Propyl-1H-pyrrol-2-yl)ethanone (27):32 Isolated yield: 91%; dark-brown viscous liquid. 1H NMR (400 MHz, CDCl3): δ = 6.96 (dd, J = 4.0, 1.6 Hz, 1 H), 6.85 (app t, J = 2.5 Hz, 1 H), 6.12 (dd, J = 4.0, 2.5 Hz, 1 H), 4.27 (t, J = 7.2 Hz, 2 H), 2.43 (s, 3 H), 1.75 (hext, J = 7.2 Hz, 2 H), 0.89 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 188.2, 130.2, 130.1, 120.2, 107.8, 51.4, 27.3, 24.6, 11.0.
  • 32 Goldberg Y, Abele E, Shymanskaya M. Synth. Commun. 1991; 21: 557