Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

α,β-unsaturated γ-keto esters

γ-butenolides

N,N'-dioxides

Michael addition

scandium

J. JI, L. LIN, L. ZHOU, Y. ZHANG, Y. LIU, X. LIU, X. FENG* (SICHUAN UNIVERSITY, CHENGDU, P. R. OF CHINA)

N,N'-Dioxide–Scandium(III)-Catalyzed Asymmetric Michael Addition of β,γ -Unsaturated Butenolides to α,β -Unsaturated γ -Keto Esters

Adv. Synth. Catal. 2013, 355, 2764-2768.

N,N'-Dioxide-Scandium(III)-Catalyzed Asymmetric Michael Addition

Significance: Butenolide derivatives represent an important structural motif in natural products and pharmaceuticals. The authors develop a highly efficient catalytic system for the asymmetric vinylogous Michael addition of γ -substituted butenolides to α,β -unsaturated γ -keto esters, leading to γ,γ -disubstituted butenolides in good yield and excellent enantioselectivities.

SYNFACTS Contributors: Hisashi Yamamoto, Fengtao Zhou Synfacts 2014, 10(1), 0054 Published online: 13.12.2013 **DOI:** 10.1055/s-0033-1340455; **Reg-No.:** H16213SF

Comment: The substrate scope of this reaction is well investigated. The ester groups of the α,β -unsaturated γ -keto esters display an influence on both diastereo- and enantioselectivity. The bulkier γ -substituted groups in the butenolides lead to the increase of diastereo- and enantioselectivity, but the reactivities decrease obviously. Aromatic and aliphatic unsaturated γ -keto esters are well tolerated.