Enantioselective Homologation of \(\alpha \)-Keto Esters with \(\alpha \)-Diazo Esters

Significance: The Lewis acid catalyzed homologation of carbonyl compounds with diazo compounds can realize synthetically useful carbon chain extension. The authors achieve the asymmetric homologation of acyclic \(\alpha \)-keto esters with \(\alpha \)-diazo esters by using chiral \(N,N' \)-dioxide-yttrium(III) complexes. Both aryl- and alkyl-substituted \(\alpha \)-keto esters are applicable, providing the corresponding succinate derivatives in good yields and enantioselectivities.

Comment: The use of bulky adamantyl \(\alpha \)-diazo esters can suppress the formation of undesired by-products. Steric hindrance on the 2,6-positions of the phenyl ring in the ligand is also essential to improve both enantioselectivity and reactivity. The attack of \(\alpha \)-diazo ester occurs from \(re \)-face of the coordinating \(\alpha \)-keto ester preferably due to the obstruction of \(si \)-face by the aryl group in the \(N,N' \)-dioxide ligand.

Selected examples:

- 73% yield, 92% ee
- 73% yield, 95% ee
- 70% yield, 93% ee
- 71% yield, 92% ee
- 70% yield, 94% ee
- 76% yield, 94% ee
- 70% yield, 94% ee

Proposed stereochemical model:

\(re \)-face attack favored

\(si \)-face attack disfavored