Gategory
Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

rhodium

diols

phebox ligand

Significance: Chiral diols are useful synthetic motifs in organic synthesis. Common methods for their synthesis include dihydroxylation, hydrogenation of hydroxyketones, and hydrolysis of epoxides. The authors report an enantioselective 1,2diboration of alkenes leading to optically active diols after oxidation.
sYnfacts Contributors: Mark Lautens, Zafar Qureshi
Synfacts 2014, 10(1), $0050 \quad$ Published online: 13.12.2013
DOI: 10.1055/s-0033-1340442; Reg-No.: L15213SF

Comment: Morken showed a similar diboration of terminal alkenes with a platinum catalyst with enantioselectivities up to 94% (J. Am. Chem. Soc. 2009, 131, 13210). The authors present a rhodi-um-catalyzed diboration-oxidation of terminal alkenes providing enantioselectivities up to 99%. However, disubstituted alkenes proved to be more difficult. 1-Methylstyrene gave the diol with a moderate 76% ee, whereas β-methylstyrene, 1,2-dihydronaphthalene, and trans-stilbene did not react.

