Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

rhodium

kinetic resolution diamine ligands M.-K. LEMKE, P. SCHWAB, P. FISCHER, S. TISCHER, M. WITT, L. NOEHRINGER, V. ROGACHEV, A. JÄGER, O. KATAEVA, R. FRÖHLICH, P. METZ* (TECHNISCHE UNIVERSITÄT DRESDEN UND WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER, GERMANY; TOMSK POLYTECHNIC UNIVERSITY, RUSSIA)

A Practical Access to Highly Enantiomerically Pure Flavanones by Catalytic Asymmetric Transfer Hydrogenation *Angew. Chem. Int. Ed.* **2013**, *52*, 11651–11655.

Rhodium-Catalyzed Asymmetric Transfer Hydrogenation

Significance: Chiral flavanone moieties are among the largest secondary metabolites in plants. As such, they have been known for their antifungal, antibacterial, and antiviral effects. The authors present a practical and convenient method for the synthesis of both enantiomers of this class of molecules.

 SYNFACTS Contributors: Mark Lautens, Zafar Qureshi

 Synfacts 2014, 10(1), 0058
 Published online: 13.12.2013

 DOI: 10.1055/s-0033-1340441; Reg-No.: L15113SF

Comment: The catalytically active rhodium hydride species was generated in situ prior to the addition of the substrate. This method allowed the authors to reduce catalyst loading to 0.5 mol% while retaining high enantioselectivities. They were able to synthesize both enantiomers of the natural product glabrol.