Rhodium-Catalyzed Asymmetric Transfer Hydrogenation

Significance: Chiral flavanone moieties are among the largest secondary metabolites in plants. As such, they have been known for their antifungal, antibacterial, and antiviral effects. The authors present a practical and convenient method for the synthesis of both enantiomers of this class of molecules.

Comment: The catalytically active rhodium hydride species was generated in situ prior to the addition of the substrate. This method allowed the authors to reduce catalyst loading to 0.5 mol% while retaining high enantioselectivities. They were able to synthesize both enantiomers of the natural product glabrol.

Selected examples:

- **catalyst** (0.5–10 mol%) HCO₂H, Et₃N
 - up to 50% yield
 - up to >99% ee
 - 9 examples

- **Up to 0.373 mmol**
 - 50% yield
 - 97% ee

- **45% yield**
 - >99% ee
 - Standard conditions

Synthesis of (S)- and (R)-glabrol:

1. TPAP
2. NaBO₃

© Thieme Stuttgart · New York