Enantioselective Rhodium-Catalyzed DYKAT of Racemic Allenes

Significance: Chiral amines are present in numerous biologically active compounds (see Book below). Starting from readily accessible racemic allenes, the authors were able to access indane structures containing chiral amines via a dynamic kinetic asymmetric transformation (DYKAT) in a [3+2] cycloaddition.

Comment: The rhodium hydride, formed by the initial directed C–H activation, adds across the racemic allene forming a rhodium allyl species. The rhodium allyl species can then interconvert via σ-π-σ isomerization leading to a chiral intermediate which adds to the imine (see below for a Review on axis-to-center chirality transfer).
