Enantioselective Rhodium-Catalyzed DYKAT of Racemic Allenes

Significance: Chiral amines are present in numerous biologically active compounds (see Book below). Starting from readily accessible racemic allen es, the authors were able to access indane structures containing chiral amines via a dynamic kinetic asymmetric transformation (DYKAT) in a [3+2] cycloaddition.

Comment: The rhodium hydride, formed by the initial directed C–H activation, adds across the racemic allene forming a rhodium allyl species. The rhodium allyl species can then interconvert via σ–π–σ isomerization leading to a chiral intermediate which adds to the imine (see below for a Review on axis-to-center chirality transfer).
