Enantioselective Low-Temperature
1,4-Addition of Arylboronic Acids

Significance: Although various chiral rhodium catalysts have been developed, the rhodium-catalyzed asymmetric conjugate addition of arylboronic acids to α,β-unsaturated carbonyl compounds below 0 °C has not been achieved. This paper describes the rhodium-catalyzed enantioselective 1,4-addition of arylboronic acids at low temperature. The use of the highly electron-poor (R)-MeO-F$_{12}$-BIPHEP ligand can retain the activity of the rhodium catalyst, which can serve to improve enantioselectivities.

Comment: A variety of N-substituted maleimides are applicable to this method, affording the corresponding chiral succinimides in excellent yields and enantioselectivities. Notably, the enantioselective 1,4-addition to N-H-maleimide, which has been reported as an inactive substrate for rhodium-catalyzed asymmetric 1,4-addition, is also successful. When the reaction is performed at −50 °C, the enantioselectivity is improved to up to 87% ee.

SYNFACTS Contributors: Hisashi Yamamoto, Yusuke Aoe
Synfacts 2014, 10(1), 0049 Published online: 13.12.2013
DOI: 10.1055/s-0033-1340439; Reg-No.: H16013SF

Category
Metal-Catalyzed
Asymmetric
Synthesis and
Stereoselective
Reactions

Key words
rhodium
asymmetric
1,4-addition
arylboronic acids
α,β-unsaturated
carbonyls
low-temperature
addition