Asymmetric Organocatalytic Synthesis of Lactams and Lactones

Significance: The reported method for the synthesis of lactams and lactones 4 employs quinine- and quinidine-derived catalysts 3 to activate α,β-unsaturated acid chlorides 1 toward reaction with bisnucleophiles 2. A variety of heterocycles relevant to medicinal and natural product chemistry were obtained, including 2-pyrrolidinones, 2-piperidinones, enol δ-lactones, and 3,4-dihydro-2-pyridinones. The yields are modest to good and enantioselectivity is good to excellent. The method was demonstrated to provide two intermediates for drug synthesis (one on a gram scale).

Comment: For success of the reported method, significant tuning of the reaction conditions to the substrate, including the use of excess reactant; the choice of base, catalyst, and temperature; and the use of additives, is required. Catalyst 3b affords products of opposite configuration to those obtained using 3a or 3c; although, in our opinion, the publication relies too heavily on assumptions in drawing this conclusion. In the synthesis of piperidinones, a retro-aza Michael side reaction results in low yields of the desired product. Interestingly, Michael addition, not acylation, appears to be the first mechanistic step, a fact essential to explaining the enantioselectivity.

SYNFACTS Contributors: Victor Snieckus, Benjamin N. Rocke (Pfizer)

SYNFACTS 2014, 10(1), 0022 Published online: 13.12.2013
DOI: 10.1055/s-0033-1340278; Reg-No.: V15813SF