H. MIYAMOTO, T. HIRANO, Y. OKAWA, A. NAKAZAKI,* S. KOBAYASHI* (TOKYO UNIVERSITY OF SCIENCE, CHIBA, JAPAN)
Stereoselective Synthesis of Spirocyclic Oxindoles Based on a One-Pot Ullmann Coupling/Claisen Rearrangement and its Application to the Synthesis of a Hexahydropyrrolo[2,3-b]indole Alkaloid
Tetrahedron 2013, 69, 9481–9493.

Construction of Spirocyclic Oxindoles for Indole Alkaloid Synthesis

Significance: Oxindoles bearing a quaternary stereogenic center at C3 represent attractive synthetic targets due to both their biological activity and their utility as synthetic intermediates. Kobayashi and co-workers have previously reported a stereoselective Claisen rearrangement of bicyclic dihydropyrans to provide multifunctionalized spiro[4.5]decanes (see Review below). The current study extends this methodology to the rearrangement of pyranoindoles, which are accessed from readily synthesized 2-haloindoles through an intramolecular Ullmann condensation (IUC), to yield spirocyclic oxindoles in a stereoselective manner. Oxidative cleavage of the olefin moiety of the products leads to stereochemically defined oxindoles, which can be readily elaborated into members of the hexahydropyrrolo[2,3-b]indole family of alkaloids, as demonstrated by the synthesis of (−)-debromoflustramine B.


Comment: Optimization studies demonstrated that the IUC proceeded best under modified Hauptman coupling conditions (CuCl, 2-aminopyridine, NaOMe). The Claisen rearrangement occurred simply by heating the intermediate pyranoindoles. Due to issues with the stability of the intermediates, a one-pot sequence was developed in which, on completion of the IUC, the temperature was raised to effect the rearrangement. Indoles incorporating trans-substituents on the aliphatic alcohol afforded the oxindole as single diastereomers (NOE, X-ray analyses), the stereochemistry of which indicated that the rearrangement proceeds through a boat-like transition state. The cis isomers did not give the desired products, and attempts to form furanoindoles also failed. A range of N-indole protecting groups were tolerated. A remarkable rate enhancement was observed running the reaction in glyme solvents, which avoided the use of a sealed tube. Subjecting enantiopure secondary alcohols to the reaction led to a slight erosion in enantiomeric excess (10–15% ee), whereas the ee of chiral tertiary alcohols was maintained.