Recent Progress in the Synthetic Assembly of 2-Cyclopentenones

David J. Aitken,* Hendrik Eijsberga, Angelo Frongia,b Jean Olliviera, Pier Paolo Pirasb

a Laboratoire de Synthèse Organique & Méthodologie, ICMMO (CNRS UMR 8182), Université Paris Sud, 15 rue Georges Clemenceau, 91045 Orsay cedex, France
Fax +33(1)69156278; E-mail: david.aitken@u-psud.fr
b Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, 09042 Monserrato, Cagliari, Italy

Received: 09.07.2013; Accepted after revision: 21.08.2013

Abstract: An overview of the most important synthetic strategies currently available for the preparation of cyclopent-2-enones is presented and illustrated with recent applications.

1 Introduction

Scope of this Review

2-Cyclopentenones are a frequently encountered class of cyclic enone. They feature in many areas of organic chemistry and serve as benchmark substrates for numerous chemical transformations, and natural product structures containing a 2-cyclopentenone molecular feature are ubiquitous.

Some of the synthetic routes to the title compounds have been reviewed periodically1 (see also specific sections), but a global appraisal has not appeared for some time.2 This review covers the literature over the last decade or so, and it endeavors to provide an overview of the most commonly used synthetic approaches for assembling the eponymous core feature from unrelated precursors. It is structured according to the strategy by which the cyclic enone feature is created, rather than according to any particular type of derivative or substitution pattern. New approaches as well as new results using established ones are considered equally.

The numerous methods available for the generation of 2-cyclopentenones by α,β-elimination reactions of appropriately functionalized cyclopentanone precursors fall outside of the scope of this review, as do the vast array of oxidations of cyclopentenes, 2-cyclopentenols and cyclopentanones. These limitations notwithstanding, there are a considerable number of ways in which the target ring system can be created from acyclic precursors, in either intermolecular or intramolecular mode. Most of the possible disconnection strategies have been examined, and it is important to recognize that for any given target 2-cyclopentenone, there may be several convenient approaches available. The main approaches for ring construction are summarized graphically in Figure 1.

Figure 1 The main ring-construction strategies for 2-cyclopentenone synthesis, showing the atom connectivities made during ring assembly (left and center) and cyclization approaches (right). These and other strategies are covered in this review.

Useful procedures based on the transformation of existing cyclic structures also exist, as do some miscellaneous methods; these will be treated towards the end of this review.

The ‘ideal’ choice of synthetic route depends both on the specific features in the target skeleton, such as the presence of sensitive functional groups or stereogenic centers, and on contextual constraints, such as the employment (or the preclusion) of metals, heat, particular solvents, and so on. Control of the relative configuration of 4,5-disubstituted 2-cyclopentenones can be achieved either by using a precursor in which those chiral centers are already established, or by using an approach in which these centers are created in a diastereoselective fashion, such as the Nazarov or related cyclizations. The preparation of nonracemic 4- and/or 5-substituted 2-cyclopentenones frequently relies on the use of nonracemic chiral substrates.

The use of chiral auxiliaries during the ring-creation process has allowed some asymmetric syntheses to be performed, but catalytic enantioselective syntheses are rare at present; indeed this might constitute an area of particular attention for future developments.

Applications of the synthetic approaches reviewed herein have been selected for illustrative purposes as best as possible, but the quantity of work conducted in the area and the structural diversity of the molecular targets make it unfeasible to present an exhaustive list of synthetic applications here.
Biographical Sketches

David J. Aitken was born in 1963 and studied chemistry at the University of Strathclyde (Glasgow), obtaining his PhD in 1986, under the supervision of Prof. H. C. S. Wood and Prof. C. J. Suckling. After a two-year post-doctoral appointment with Prof. H.-P. Husson at the ICSN (Gif-sur-Yvette) he was appointed CNRS researcher at Descartes University (Paris). In 1998 he became Professor of Organic Chemistry at the University of Clermont-Ferrand, and in 2006 he transferred to his current position as Professor at the University Paris Sud (Orsay). His research interests, conducted in the ICMMO research institute, include the synthesis of functionalized small-ring compounds, particularly unnatural amino acids, as building blocks for foldamers and peptidomimetics, and synthetic organic photochemistry.

Hendrik Eijsberg studied at the Ecole Nationale Superieure de Chimie de Paris (France) and carried out undergraduate work on the asymmetric conjugate addition of organoboron compounds catalyzed by rhodium–diene complexes in the group of Prof. J.-P. Genet and Dr. S. Darses. In 2008, he joined the group of Prof. D. J. Aitken at the University of Paris-Sud (Orsay) where he carried out his PhD studies on the photochemistry of cyclopentenones and alkynes beyond the [2+2] stage. He collaborated during his PhD with the group of Prof. P. P. Piras from the University of Cagliari (Italy) on an organocatalysis project. He finished his PhD in 2012 and joined the group of Professor I. Marek in the Technion Institute (Israel). His research interests now include zirconium-mediated reactions and carbometalation of small rings.

Angelo Frongia was born in Cagliari (Italy) in 1973. He graduated and received his PhD degree in Organic Chemistry from the University of Cagliari under the supervision of Prof. P. P. Piras. Following collaborative post-doctoral research in the group of Prof. D. J. Aitken in the ICMMO, University Paris Sud (Orsay), he joined the academic staff at the University of Cagliari in 2010. He is currently Assistant Professor of Organic Chemistry at the Faculty of Sciences. His research interests include asymmetric synthesis and development of new synthetic methods based on transformation of strained organic compounds.

Jean Ollivier obtained his PhD degree in 1982 at the University Paris-Sud (Orsay) under the direction of Dr. J. Salaün, then joined the Centre National de la Recherche Scientifique (CNRS). In 1986 he obtained a Doctorat-ès-Sciences degree in Organic Chemistry and then spent a year (1987) as a postdoctoral fellow at the Dyson Perrins Laboratory (Oxford) with Dr. S. G. Davies. He then returned to Orsay and is presently Chargé de Recherche in the ICMMO,

Pier Paolo Piras received his Laurea in Chemistry at the University of Cagliari (Italy) in 1971 and began his academic career at the same university as Assistant Professor in 1972. He was a postdoctoral fellow (1980–1981) with Professor C. J. M. Stirling at the University of Bangor (North Wales). In 1990–1991 he spent a sabbatical year at the Laboratoire des Carbocycles, University of Paris-Sud (Orsay) working on cyclopropane derivatives with Dr. J. Salaün. Returning to Cagliari, he was appointed Associate Professor in 1985, then full Professor of Organic Chemistry in 2001. In 2009 he was a Visiting Professor in the University of Paris-Sud (Orsay). His primary research interests focus on the synthesis and reactivity of strained carbocycles, the synthesis of natural products, and asymmetric organocatalytic reactions.

Synthesis 2014, 46, 1–24 © Georg Thieme Verlag Stuttgart · New York
Overview of 2-Cyclopentenone Reactivity

While the purpose of this review is to relate the main synthetic approaches for the preparation of 2-cyclopentenones, it is useful to present here a brief summary of the chemical reactivity of this molecular core, for two reasons. Firstly, the diversity of chemical transformations that can be carried out thereupon goes some way to explaining the popularity of the system, and secondly, these reactivity features should be kept in mind when planning the synthesis of any particular 2-cyclopentenone derivative. The core structure is highly reactive, with methods available for the modification of every position (Figure 2).

![Figure 2 The multiple reactivity profile of the 2-cyclopentenone core structure](image)

At the 1-position, the carbonyl group can react in a typical manner with nucleophiles that give regioselective 1,2-additions to conjugated ketones, such as Luche reduction or addition of organometallic reagents. The 2-position can be functionalized in a number of ways. The conjugate addition of a weak nucleophile to the 3-position creates an enolate, which reacts at C2 with carbonyl compounds or imines (in Baylis–Hillman-type reactions) or with arylating reagents. 2-Halocyclopentenones can be prepared similarly or by other straightforward methods. The 3-position, as well as conditions which provide the addition of organometallic reagents. The 4-position can be brominated with means and then engaged in carbon–carbon bond-forming reactions such as palladium-catalyzed couplings or radical induced additions. 2-Cyclopentenone-2-boronic acids can also be prepared for cross-coupling reactions.

The 3-position can easily be functionalized via conjugate addition of a variety of nucleophiles, both organic and heteroatomic, and these reactions are often amenable to high degrees of enantiomeric control. Heck-type reactions can also be carried out on this position. The tandem sequence of nucleophilic attack at C3 followed by electrophilic capture of the intermediate enolate at C2 is an elegant route to double functionalization.

The 4-position can be brominated with N-bromosuccinimide, which opens the way to further functionalization at this position. Vinylogous deprotonation–alkylation procedures generally require a heteroatom substituent at the 3-position, as well as conditions which provide the thermodynamic enolate.

The 5-position can react as a typical α carbon to a carbonyl function. The generation of a kinetic enolate allows regioselective electrophilic alkylation at C5. Aldolizations have been described, with recent developments allowing for enantiomeric control.

2-Cyclopentenones are frequent partners in cycloaddition reactions, including photochemical [2+2]-cycloadditions and Diels–Alder reactions. Stereoselective cyclopropanations, aziridinations, and epoxidations are also feasible reactions.

2 Multicomponent Ring Assembly

2-Cyclopentenones can be prepared by assembling two or more components through the formation of at least two new σ bonds, generally in a sequential fashion. This is a versatile and often efficient approach for the construction of the target core and it allows for considerable structural diversity. Metal catalysts are often employed.

(2+2+1) Ring Assembly

The historic example of this type of approach is the Pauson–Khand reaction, in which a cyclopentenone is formed from an alkene and an alkyne in the presence of [Co₂(CO)₈]. The generally accepted mechanism (Scheme 1) shows how provision can be made for substituents in all positions. The intermolecular version can be qualified as a (2+2+1) ring assembly. Regioselectivity is an important issue, and is dependent on steric factors: usually R1 is larger than R2. Strained or reactive alkynes are privileged; congested alkynes react less well. The intramolecular version – formally a (4+1) assembly, but treated here nonetheless – overcomes a good number of the selectivity issues, and provides a versatile entry to polycyclic skeletons. The reaction has been widely studied and considerable synthetic use has been made thereof. Progress has been reviewed regularly, while particular attention paid to intramolecular and catalytic versions, and a comprehensive monograph has appeared very recently.

Amongst the numerous developments of the Pauson–Khand reaction, it is worth noting that complexes of metals other than cobalt may serve as catalysts, while formates or aldehydes can be used as safer CO sources. The presence of tertiary amine N-oxides is thought to have an accelerating effect, helping in the oxidative removal of one CO from the alkyne–cobalt complex.

![Scheme 1](image)
rine alkaloids (±)-axinellamines A and B. In the preparation of structural analogues of the anti-cancer ses-quiapterene thapsigargin, an intramolecular rhodium-mediated Pauson–Khand reaction was carried out on allene–alkyne 6 to close a seven-membered ring and give product 7 in good yield. In a recent evaluation of synthetic routes to polycyclic targets, chiral dieneynes 8 were found to undergo highly chemoselective Pauson–Khand reaction in benzaldehyde, which served as the CO source, using [Rh(cod)Cl]2 as the catalyst in the presence of racemic BINAP. High cis-diastereoselectivity (up to >20:1) was observed in the products 9, particularly when bulky substituents were borne adjacent to the chiral center.

A π-allylic precursor can be used instead of the alkyne component. For example, reaction of allyl methyl carbonate with norbornene gave a good yield of the cyclopentenone adduct 10 with exclusive exo-selectivity (Scheme 3).

![Scheme 2](image)

Scheme 2

Reductive (2+2+1) cyclocarbonylations of internal alkynes require more drastic conditions than those habitually employed in the Pauson–Khand reaction, but they have been achieved using a rhodium catalyst in the presence of urea under high carbon monoxide pressure (Scheme 4). A high diastereomeric excess was observed in the products 11, with cis-isomers arising from dialkylalkynes and trans-isomers from diarylalkynes. In the latter cases, yields were lower due to the formation of a lactone byproduct.

![Scheme 4](image)

Scheme 4

(3+2) Ring Assembly

In an effort to overcome some of the limitations of intermolecular Pauson–Khand reactions, a number of (3+2) ring assemblies have been considered. Construction of the five-membered-ring target has been achieved using most of the conceivable disconnections.

Nickel-catalyzed cycloaddition of α,β-unsaturated phenyl esters 12 with internal alkynes provided trisubstituted 2-cyclopentenones 13 (Scheme 5). The regioselectivity varied from poor to excellent, depending on the alkyne used, while terminal alkynes were inefficient substrates. A mechanism was proposed, implicating a η3-oxaallyl phenoxy nickel intermediate.

![Scheme 5](image)

Scheme 5

Nickel-mediated cyclization of alkenyl Fischer carbenes 14 with internal alkynes provided a wide selection of adducts 15 in a highly regioselective manner (Scheme 6). A recent variation employed a chromium alkynylcarbene 16 and an alkenyl organolithium 17, both of which were prepared from simple precursors. Again, a variety of substitution patterns were accommodated in the products 18, and the method can be adapted for enantioselective cyclizations. Mechanistic models for these transformations were proposed by the authors.
Vicinal donor–acceptor disubstituted cyclopropanes are convenient precursors for 1,3-dipoles. The Lewis acid mediated reaction of cyclopropanes with silyl enol ethers gave the [3+2]-cycloaddition adducts which spontaneously eliminated ethanol to give the cyclopentadienes, which required deprotection with hydrofluoric acid to give the corresponding 2-cyclopentenones (Scheme 7).42

Scheme 7

Zinc chloride promoted a [3+2]-cycloaddition between isoprenyl chloride and methylthio phenylthio ethyne (Scheme 8). The reaction lacked regioselectivity, but the two adducts 22 and 23 were separated and transformed easily into the corresponding phenylthio 2-cyclopentenones 24 and 25 in good yields. The chemistry of the thioether function was exploited in order to access further derivatives.43

Scheme 8

Interesting results have been observed using allenes as either the two-carbon or three-carbon component in (3+2) assemblies (Scheme 9). Chiral α-ethers of allenyl carboxamides 26 reacted with alkenyllithium reagents to give adducts which, upon addition of acid, gave transient protonated vinyl alkenyl ketones that cyclized to chiral 2-cyclopentenones 27 in a conrotatory 4π-electron process, in Nazarov fashion (vide infra).44 It was suggested that this process resulted in axial-to-tetrahedral chirality transfer.45 In a complementary fashion, reaction of a chiral lithiated allene 28 with an α-methylcinnamide followed by acidic treatment gave the enantiomerically enriched 2-cyclopentenone derivative 29.46

Scheme 9

An organocatalytic iminium ion/N-heterocyclic carbene tandem reaction sequence has been used to combine α,β-unsaturated aldehydes and β-keto phenyltetrazolesulfones 30 to give 2,4-disubstituted 2-cyclopentenones 32 in a highly enantioselective manner (Scheme 10). Besides the elegance of the sequential organocatalyzed asymmetric Michael addition–benzoin condensation, the judicious inclusion of a phenyltetrazolesulfone (SO2PT) moiety facilitated a Smiles rearrangement to liberate the target 2-cyclopentenones 32; a rational mechanism for this was proposed.47

Scheme 10
Tandem condensation–Wittig cyclization reactions between 2-oxo- or 2,4-dioxo-alkylidinephosphoranes and glyoxals or diaxylolofins represent another (3+2) type of assembly leading to cyclopentenones in an efficient manner, although cyclohexenone formation may be a competing process. Some aspects of this methodology were reviewed recently. In the reaction of phosphoranes \(\text{R}^3 \text{O} \), with a series of maleic diesters, the 2-cyclopentenone products \(\text{R}^3 \text{O} \) were obtained in moderate yields but excellent diastereoselectivities (Scheme 11). One study was carried out using a chiral sulfoxide derivative of 2-oxopropylidine phosphorane \(\text{R}^3 \text{O} \), prepared in situ and treated with a series of (E)-enediones. In the presence of a key copper additive, the Michael addition and subsequent intramolecular Wittig reaction proceeded in a highly regiospecific and stereoselective fashion to give the corresponding 3-methyl-5-sulfoxycyclopentenones \(\text{R}^3 \text{O} \). Conditions were also established for the facile removal of the sulfoxide adjuvant, and the resulting 3,4-disubstituted 2-cyclopentenones \(\text{R}^3 \text{O} \) were obtained with very high enantiomeric excess (Scheme 11).

Intermolecular condensations involving classical carbanion chemistry appear to offer a simple route to the 2-cyclopentenone core, but side reactions often limit the synthetic utility. Nevertheless, successful applications of such chemistry do appear. A number of recent papers have described crossed-aldol condensations between benzil derivatives and selected ketones to give highly functionalized 4-hydroxy-2-cyclopentenones, usually as diastereoisomeric mixtures. A comprehensive study of the cyclization of 1,2-diketones with 1,3-dicarbonyl dianions \(\text{R}^3 \text{O} \), or with the corresponding silyl enol ethers \(\text{R}^3 \text{O} \) under acidic conditions, revealed this to be a convenient and quite general approach for the preparation of a series of 2-acyl-4-hydroxy-2-cyclopentenones, \(\text{R}^3 \text{O} \), respectively (Scheme 12). The base-mediated reactions required a silica gel treatment to induce the cyclization, while the more direct silyl enol ether approach gave slightly lower yields.

The reaction of 3-substituted allenates \(\text{R}^3 \text{O} \) with symmetrical diaryl 1,2-diketones in the presence of a phosphine gave highly substituted 2-cyclopentenones \(\text{R}^3 \text{O} \) in excellent yields (Scheme 13). The reaction appeared to be highly diastereoselective although data were not given. The reaction also proceeded with unsymmetrical diones, although without regioselectivity. A zwitterionic adduct formed from the allene and the phosphine was proposed as the key reactive intermediate, which first attacked one carbonyl with elimination of water then attacked the second carbonyl with water assistance to induce cyclization.

(4+1) Ring Assembly

An alternative approach to the 2-cyclopentenone core is a (4+1) assembly, which has the clear advantage of removing regioselectivity issues. Carbon monoxide is the obvious ‘one-carbon’ component, providing C1 of the target structure, but a few other reagents have been used successfully to provide C3 or C5 when combined with appropriate ‘four-carbon’ partners.

Borylationative cyclization of 1,3-butadiene derivatives in the presence of carbon monoxide has been known for some time, and is still considered a pertinent strategy. A
series of bicyclic enones 45 was prepared in excellent yields from the appropriate halogeno-dienes 44 using a palladium catalyst under an atmosphere of carbon monoxide (Scheme 14).55

\[
\begin{array}{c}
\text{CO (1 atm)} \\
\text{Bu₄NCl, py, DMF} \\
\text{100 °C}
\end{array}
\]

\[
\begin{array}{c}
\text{Bu₄NCI} \\
\text{R = Ph, 91%} \\
\text{R = Bu, 42%}
\end{array}
\]

Scheme 14

An interesting recent development is the carbonylation of a 1-lithiobutadiene 46 followed by spontaneous cyclization to give a cyclopentadienyl enolate 47 (Scheme 15). It was shown that this intermediate could be trapped by acylation at the γ-position, providing the corresponding 2-cyclopentenone 48 in a one-pot process. However, the system was sensitive to steric factors and the 4,5-positions were obtained when the 4,5-positions were substituted.55

\[
\begin{array}{c}
\text{CO \rightarrow} \\
\text{Bu₄NCI, py, DMF} \\
\text{100 °C}
\end{array}
\]

\[
\begin{array}{c}
\text{Bu₄NCI} \\
\text{R = Ph, 91%} \\
\text{R = Bu, 42%}
\end{array}
\]

Scheme 15

A titanium-mediated (4+1) assembly of 1,3-butadienes and nitriles has been described, in which the nitrile acts as the ‘one-carbon’ component.56 Treatment of 2-silyloxybutadiene 49 with titanium isopropoxide and a Grignard reagent gave a titanacyclopentene intermediate which reacted with a nitrile to give a silylocyclopentenylamine 50; spontaneous hydrolysis during work-up led to the corresponding 2-cyclopentenone 51 directly (Scheme 16).

\[
\begin{array}{c}
\text{OTMS} \\
\text{a) Ti(OEt)₄ \rightarrow} \\
\text{b) RCN, -20 °C}
\end{array}
\]

\[
\begin{array}{c}
\text{OTMS} \\
\text{a) Ti(OEt)₄ \rightarrow} \\
\text{b) RCN, -20 °C}
\end{array}
\]

Scheme 16

Vinyl ketenes are useful intermediates in synthesis and they can be stabilized to some extent as trialkylsilyl derivatives. A selection of such vinyl ketenes 52 reacted with nucleophile carbenes, generated in situ thermally, to provide highly substituted 2-cyclopentenones 53 in good yields (Scheme 17).57 In another study, the reaction of vinyl ketene 54 with selected α-benzotriazolyl (Bt) organolithium reagents 55 gave the 2-cyclopentenones 56 in fair to good yields, although the addition of a Lewis acid was sometimes necessary to facilitate departure of the Bt group (Scheme 17). The products in this case were obtained with good trans-stereoselectivity, particularly when the 5-position was monosubstituted.58

\[
\begin{array}{c}
\text{R = Ph, alkyl, chlorosilyl} \\
\text{4 examples}
\end{array}
\]

\[
\begin{array}{c}
\text{R = Ph, alkyl, chlorosilyl} \\
\text{4 examples}
\end{array}
\]

Scheme 17

A selection of stable silyl vinyl ketenes bearing tricarbonylchromium(0) arene substituents 57 were prepared from Fischer carbene complexes and alkenes, and reacted with diazomethane, or a derivative thereof, to give the (4+1)-annulation products 58 in excellent yields and in a completely stereoselective fashion (Scheme 18).59 Removal of the chromium moiety was subsequently achieved using cerium(IV) ammonium nitrate. This process was applied in an elegant intramolecular mode, to provide an efficient synthesis of the rocaglamide skeleton, whereby the Fischer carbene alkyne 59 was transformed in a three-step process into adduct 60 in good yield and complete stereoselectivity (Scheme 18).60 Related studies showed that the Köbrich reagent (CH₂I₂ with BuLi) could be used instead of a diazoalkane, while the use of tert-butyl isocyanate provided the 2-cyclopentenone core with an exocyclic (Z)-imine moiety at the 5-position.61

\[
\begin{array}{c}
\text{MeO} \\
\text{a) \Delta, benzene \rightarrow} \\
\text{b) PhCH₃N₂, Et₂O} \\
\text{c) CAN, MeOH}
\end{array}
\]

\[
\begin{array}{c}
\text{MeO} \\
\text{a) \Delta, benzene \rightarrow} \\
\text{b) PhCH₃N₂, Et₂O} \\
\text{c) CAN, MeOH}
\end{array}
\]

Scheme 18

The reaction of methylene cyclopropanes 61 with Fischer carbene chromium complexes 62 provided 2-cyclopentenones 63 in which the ring had been formed from all four of the methylene cyclopropane carbon atoms plus one equivalent of carbon monoxide (Scheme 19). The proposed mechanism involved an initial [2+2]-cycloaddition followed by a rearrangement to give an intermediate alkylidinemetalacyclopentane which then underwent CO insertion, chromium elimination, and finally isomerization.62

© Georg Thieme Verlag Stuttgart · New York Synthesis 2014, 46, 1–24
3 Cyclizations

In this review, ‘cyclization’ implies the formation of a new ring structure from an acyclic molecule (or from an acyclic fragment of a larger molecule) through the formation of one new σ bond. This definition includes cases where a new π system is generated (or an existing π system is shifted) as the σ bond is formed. A comprehensive review of ring-closure approaches to cyclopentane derivatives, including some useful precursors of 2-cyclopentenones, appeared recently.63

Nazarov Cyclization

Arguably one of the most important methods for the preparation of 2-cyclopentenones is the acid-promoted cationic pericyclization of a divinyl ketone, first reported by Nazarov in 1944.64 It is now established that the reaction is initiated by acid complexation of the ketone to give a pentadienyl cation which undergoes a 4π-electron cyclization in a conrotatory fashion to provide an oxyallyl cation intermediate. Elimination of a proton followed by reprotonation of the acid-bound enolate gives the 2-cyclopentenone product (Scheme 20).

The obvious synthetic potential was for some time offset by selectivity issues, involving the regiochemistry of the proton elimination step and the stereochemistry of the enolate protonation step, as well as the harsh acidic conditions which were often required. As work progressed, it emerged that steric and/or electronic effects (particularly polarized double bonds) could be harnessed to control the selectivity, and milder reaction conditions were discovered. Significant recent developments include the use of organocatalysts65 and transition-metal-complex catalysts,66 which open the way to enantioselective reactions and/or tandem transformation sequences. The Nazarov reaction has established itself in the modern synthetic chemist’s toolbox, and progress has been documented regularly in comprehensive reviews, particularly in the last decade,67 and include focuses on catalytic versions,68 asymmetric versions,69 and alternative routes to the intermediate pentadienyl cation in order to circumvent the highly reactive divinyl ketone substrates.70 Processes in which the cyclopentenyl cation intermediate is intercepted by a nucleophile constitute a rich and developing area referred to as ‘interrupted Nazarov reactions’, but generally they deviate the reaction course away from 2-cyclopentenone formation.71

Only a few of the many recent elegant applications of the Nazarov cyclization are presented here (Scheme 21). In a synthesis of (+)-xanthocidin, very fast cyclization of the highly substituted divinyl ketone 64 was achieved using iron(III) chloride. The sterically challenged oxallyl cation intermediate underwent exocyclic elimination leading to the 5-methylene-2-cyclopentenone product 65 in less than three minutes.72 The preparation of a 2-hydroxycyclopentenone core can be achieved using a vinyl diketone as the precursor. As part of the total synthesis of (+)-fusicoauritone, the acidic treatment of the macrobicycle 66 with a Lewis acid gave the requisite tricyclic product 67 with an all-syn stereochemistry.73 The Nazarov cyclization of the 3-acylated benzofuran 68 was the key step in a short formal synthesis of (+)-methyl rocaglate; while other Lewis acids only induced a retro-Friedel–Crafts reaction, acetyl bromide was able to induce cyclization to give 69 in very good yield.74 A chiral Brensted acid was used to catalyze the cyclization of 70 with excellent yield and torquoselectivity, to furnish 71 with 82% ee in a concise formal synthesis of (+)-roseophilin. In principle, water is required to trap the oxallyl intermediate and presumably was furnished by the reagent-grade carbon tetrachloride used as the solvent.75 Copper(II)-complex-mediated cyclizations may be accompanied by skeletal rearrangements, again at the oxallyl cation stage, and such a process was exploited in a total synthesis of enokipodin B. A bulky bisoxazolidine copper(II) complex induced a sequential cyclization–double-[1,2]-Wagner–Meerwein shift transformation of divinyl ketone 72 (as an easily isomerized mixture, of which only the Z-isomer reacted) to give the 2-cyclopentenone 73 with impressive regioselectivity, although the enantioselectivity was poor.76
An impressive multi-step one-pot Wittig–Nazarov protocol was conceived for the construction of 4-alkylidene-2-cyclopentenones starting from α-diazoketones 76 and acid chlorides 77 (Scheme 23). The transformation involved iron-catalyzed formation of the stabilized ylide 78 on the one hand and base-induced formation of a ketene on the other hand. These intermediates reacted together to form a vinyl allenyl ketene 79, which then underwent trifluoroacetic acid mediated Nazarov cyclization to give the requisite products 80 in good yields and with a high selectivity for the Z-isomer.81

Scheme 23

Substrates other than divinyl ketones have been developed for the generation of pentadienyl cations, which further enhances the scope of conrotatory 4π-electron cyclizations. Reactions in this category are commonly referred to as Nazarov cyclizations, although there is some convergence with the Rautenstrauch rearrangement and perhaps also with pentadienial cyclizations (vide infra). Reduction of vinylalkylidene dioxolanones 81 provided the corresponding 5-hydroxy-2-cyclopentenones 82 as single diastereoisomers, presumably via conrotatory closure of an intermediate 1,2-oxidopentadienyl cation (Scheme 24).80 The strategy was therefore applied in a key transannulation step in a total synthesis of (±)-cephalotaxine.80 Selective oxidation of alkoxyallenes 83 using dimethyldioxirane provided an entry to oxypentadienyl zwitterions, which cyclized in a Nazarov fashion to give the bicyclic adducts 84, often as single cis-isomers (Scheme 24). A mechanism involving diastereoselective epoxidation directed by the difference in the steric bulk of the allene substituents followed by the usual concerted 4π-electron cyclization was evoked to explain the diastereoselectivity.81
Rautenstrauch Rearrangement

The palladium(II)-catalyzed isomerization of 1-ethynyl-2-alkenyl acetates to give 2,3-disubstituted 2-cyclopentenones, was first reported in 1984.\(^8\) The proposed mechanism involves consecutive metal additions to the π-systems and migration of acetate, with a hydrolysis step to liberate the enone (Scheme 25).

![Scheme 25](image)

The palladium(II) version of the reaction is still employed today: in a stereoselective assembly of the ABCE ring system of the natural product azadirachin, the E ring was constructed in this way from the enyne ester \(^8\), giving the tetracyclic adduct 86 as a 1:1 mixture of diastereoisomers (Scheme 26).\(^8\)

![Scheme 26](image)

Most recent developments of this reaction have focused on the use of gold(I) catalysts. A plausible mechanism involves initial formation of an alkyne–gold complex which undergoes a [1,2]-shift of carboxylate to generate a gold-coordinated allylic cation, which then evolves by a Nazarov-type cyclization process. The resulting acyloxy cyclopentadiene is hydrolyzed to give the bicyclic product. The standard process was applied to a series of 1-ethynyl-2-alkenyl pivaloates 87 to allow access to a wide range of 3,4- or 3,5-disubstituted 2-cyclopentenones 88 under mild conditions (Scheme 27).\(^8\) When a nonracemic substrate 89 was used, conditions were found in which the 3,4-disubstituted products 90 could be obtained with excellent chirality transfer.\(^8\) In related work, 1-ethynyl-1-allenylalkyl acetates 91 underwent cycloisomerization to acetoxyfulvenes 92, in the presence of a cationic bisoxazolidine–gold(III) complex, that then evolved to provide 4-methylene-2-cyclopentenones 93 upon methanolysis.\(^8\)

In further developments of this theme, conjugated enynyl derivatives have been cyclized, again with gold-mediated migration of an oxygen function (Scheme 28). Enynyl acetates 94 were treated with a gold(I) complex to give 3,5-disubstituted or 3,4-fused bicyclic 2-cyclopentenones 95. It was suggested that tandem gold(I)-catalyzed [3,3]-rearrangement of the substrate and activation of the allenic acetate led to the gold-coordinated allylc cation intermediate, which cyclized as indicated above.\(^8\) 5-Silyloxypent-3-en-1-ynes 96 underwent cyclization when treated with a gold(I) catalyst, to give 2-cyclopentenones 97 in generally good yields. In this case it was proposed that gold complexation of the alkyne induced siloxycyclization followed by carbon–oxygen bond fragmentation to give an allylic carbocation, which subsequently cyclized at the gold-bound alkenyl site, leading to the substituent topology observed in the final products.\(^8\)

![Scheme 27](image)

![Scheme 28](image)
provide 2-cyclopentenone 104 in 67% yield (Scheme 31).\(^{91}\) The use of the Grubbs II catalyst to transform the substrates 105 was more efficient, and provided the series of 2- and/or 4-substituted 2-cyclopentenones 106 in excellent yields.\(^{92}\) As part of the total synthesis of (+)-heptemeron B, the ring-closing metathesis reaction of the highly substituted substrate 107 was conducted using Grubbs II without incident to give the key intermediate 108, again in excellent yield.\(^{93}\) Comparable ring-closing metathesis processes were used to obtain single enantiomers of Boc-protected 2- and 5-amino-2-cyclopentenones.\(^{94}\)

Hydrative Carbocyclization

In a somewhat different fashion from the reactions described above, the hydrative carbocyclization of 1,5-diyn-3-ones 101 was achieved using a gold(I) catalyst to furnish 4-acyl-2-cyclopentenones 102, although other acyclic products were obtained as well (Scheme 30). An important difference compared to the Rautenstrauch process is the absence of oxygen moieties migration, meaning that the ketone carbon of the substrate was retained as C1 in the cyclic product. One of the alkene carbon atoms was incorporated as the acyl function in an exocyclic locus in the product structures. It was suggested that the gold-mediated hydration of the electron-rich alkyne generated a gold enolate which then cyclized to a gold cyclopentenonyl intermediate.\(^{89}\)

Ring-Closing Metathesis

One of the most important developments in metathesis has been to provide a tool for the closure of organic ring systems. Ring-closing metathesis reactions have been reviewed regularly, notably with regard to their applications to natural product synthesis.\(^{90}\) Five-membered-ring closure is generally easy, but the reaction is sensitive to electronic factors, with electron-poor alkenes being less-favored substrates. As a result, most ring-closing metathesis studies have targeted 3-cyclopentenols, although these compounds are often readily oxidized to 2-cyclopentenones without difficulty. Here, we report only on ring-closing metathesis reactions that provide 2-cyclopentenones directly.

Despite the involvement of a deactivated alkene, the Grubbs I catalyst induced the cyclization of diene 103 to
Grubbs II catalyst, the highly substituted cyclic keto ester 115 was obtained in an acceptable 65% yield (Scheme 33). With the less bulky substrate 116, the requisite ring-closing metathesis product 117 was obtained in higher yield using a lower catalyst loading.

Related to the ring-closing metathesis reaction is the so-called ring-closing enyne metathesis, which can provide a useful access to vinylcyclopentenes. However, the reaction is not efficient with the appropriate precursors for the formation of 2-cyclopentenones (Scheme 34). Cyclization of the alkene-ynone 118 in the presence of Grubbs II catalyst gave the 2-vinyl-2-cyclopentenone 119 in 32% yield,91 while the alternative alkyl-enone mode prevalent in 120 (albeit with a deactivated enone) evolved only in the presence of titanium(IV) isopropoxide and even then gave a meager 4% yield of the 3-vinyl-2-cyclopentenone product 121, accompanied by other cross-metathesis products.

Other Transition-Metal-Mediated Cyclizations

Intramolecular oxidative Heck coupling has been reported using vinyl 2-bromovinyl carbinols 122 as substrates: the 5-endo-trig cyclization gave the 2-cyclopentenones 123 directly in decent yields (Scheme 35).99 With 2-methylallyl 2-bromovinyl carbinol substrates 124, the cyclization mode switches to 5-exo-trig which furnishes the corresponding 4,4-dimethyl-2-cyclopentenones 125 in good yields.100 Propargyl 2-bromovinyl carbinol substrates 126 have also been transformed into 4-methyl-2-cyclopentenones 127, although in this case the yields were modest.

The Liebeskind–Srogl coupling reaction was applied in intramolecular mode to a highly functionalized 2-vinylstannane thioester 128 (Scheme 36). After optimization, the desired 2-cyclopentenone 129 was obtained in high yield, opening the way for an expedient total synthesis of litseaverticillols A and B.102

4-Alkynals 130 were converted into 2-cyclopentenones 131 by way of a rhodium(I)-catalyzed intramolecular hydroacylation process (Scheme 37). Substituents in any position were compatible with the process, although no 4,5-disubstituted case was examined; acetone was required as the solvent in order to obtain good yields.103 With a coordinating methoxy group in the 4-position of the substrates 132, the employment of a chiral phosphine ligand and a noncoordinating solvent, the hydroacylation provided an excellent kinetic resolution, giving the enantiomerically enriched 4-methoxy-2-cyclopentenones 133. The other enantiomers of the substrates 132 were either recovered intact, or were converted into the isomeric 2-alkylidene-cyclobutanones 134, depending on the phosphine ligand employed.104
Pentadienal Cyclizations

The δ-carbon of a doubly conjugated carbonyl moiety is not particularly nucleophilic, and few attempts to effect cyclization of such compounds had been described until recently. A study of the reactivity of simple 2,4-dienals 135 in the presence of a Lewis acid demonstrated the feasibility of the approach but also revealed some limitations: the 2-cyclopentenones 136 were obtained in only modest yields (Scheme 38).105 The cyclic aromatic 2,4-dienal 137 provided the corresponding bicyclic enone 138 in poorer yield, and the cyclization failed entirely when the γ-methyl group was absent, or when attempted with a triple-conjugated substrate. Several mechanistic possibilities were suggested, implicating the formation of a cyclopentadiene epoxide either by a concerted process or via a Nazarov-like mechanism involving the conrotatory 4π-electron cyclization of an oxypentadienyl cation; isomerization of the epoxide in the acidic medium would account for the formation of the final products (Scheme 38).105

Scheme 38

An improvement was devised, on the premise that the δ-nucleophilicity would be enhanced by making it a part of a vinylogous allyl silane system. In the event, when the silylated precursors 139 were treated with a Lewis acid they provided, after isomerization, the spiro derivatives 140 as single diastereoisomers in good yields (Scheme 39). The excellent diastereoselectivity was explained by a preferred carbonyl coordination by the Lewis acid from the less-hindered face of the six-membered ring.106 In a study of the various cyclization modes possible for the cyclic dienal 141, it was found that platinum(II) chloride in the presence of p-toluenesulfonic acid, the latter being used to induce isomerization, drove the reaction to exclusive formation of the fused 2-cyclopentenone 142.107

Scheme 39

Base-Induced Annulations

Base-mediated condensations of carbonyl compounds have been a mainstay of organic synthesis for over a century. They are still popular methodologies, notably for the construction of cyclic structures, including the title family of compounds. A few recent applications are presented here.

Scheme 40

A thiol-mediated tandem Michael–aldol reaction of the dihydronaphthalene derivatives 151 has been described as a route to fused cyclopentenones 152 (Scheme 41). The proposed mechanism resembles an intramolecular Baylis–Hillman reaction: the thiol adds in a conjugate manner to the α,β-unsaturated ester chain of the bicyclic system,
then base-induced condensation of the α-carbanion on the aldehyde, followed by elimination of the nucleophile and prototropy, leads to the 2-cyclopentenone moiety.112

Other related classical enolate-type condensation procedures have been fruitfully in intramolecular mode (Scheme 42). With the diketo ester substrate 153, the Knoevenagel reaction was employed to close the five-membered ring in the 5,7,5-tricyclic system of 154 in a total synthesis of (+)-sordaricin.113 A Knoevenagel reaction was also carried out on the polyfunctional hydroxypyranones 155, which are masked 4-keto-2-enals. Despite a number of potential condensation paths being available, treatment of these compounds with piperidinium acetate gave good yields of the cyclopenta[b]pyran derivatives 156, which were subsequently used to prepare natural product analogues for cytotoxicity evaluation.114 The triester 157 was converted smoothly into the cyclopent-2-enone-5-carboxylic ester derivative 158 by a Dieckmann cyclization during the initial steps of a short synthesis of (–)-kjellmanianone.115

A novel endocyclic keto-enamine annulation was discovered during a total synthesis of (+)-cephalotaxine (Scheme 43). Treatment of compound 159 with ferrous sulfate under aerobic conditions provided the pentacyclic adduct 160 in reasonable yield.116 The oxygen-dependent acid-mediated formation of a conjugated iminium ion was proposed to account for this reaction.

Using the highly functionalized cyclohexanone 161, an intramolecular Horner–Wadsworth–Emmons reaction was performed to construct the five-membered ring of 162 in good yield during a total synthesis of the neurotrophic modulator (+)-jiadifenin (Scheme 44).117 The detailed study of a range of 2,5-diketophosphonates 163 revealed that the choice of base was critical for the success of the Horner–Wadsworth–Emmons reaction to provide 164. Furthermore, the by-product 165 resulting from a competing intramolecular aldol reaction was sometimes observed, and non-racemic substrates suffered from stereocchemical erosion in some cases.118

A novel endocyclic keto-enamine annulation was discovered during a total synthesis of (+)-cephalotaxine (Scheme 43). Treatment of compound 159 with ferrous sulfate under aerobic conditions provided the pentacyclic adduct 160 in reasonable yield.116 The oxygen-dependent acid-mediated formation of a conjugated iminium ion was proposed to account for this reaction.

Using the highly functionalized cyclohexanone 161, an intramolecular Horner–Wadsworth–Emmons reaction was performed to construct the five-membered ring of 162 in good yield during a total synthesis of the neurotrophic modulator (+)-jiadifenin (Scheme 44).117 The detailed study of a range of 2,5-diketophosphonates 163 revealed that the choice of base was critical for the success of the Horner–Wadsworth–Emmons reaction to provide 164. Furthermore, the by-product 165 resulting from a competing intramolecular aldol reaction was sometimes observed, and non-racemic substrates suffered from stereocchemical erosion in some cases.118

A novel endocyclic keto-enamine annulation was discovered during a total synthesis of (+)-cephalotaxine (Scheme 43). Treatment of compound 159 with ferrous sulfate under aerobic conditions provided the pentacyclic adduct 160 in reasonable yield.116 The oxygen-dependent acid-mediated formation of a conjugated iminium ion was proposed to account for this reaction.
The rhodium(I)-mediated decomposition of diazo compounds 169 induced an intramolecular C–H insertion, to furnish the corresponding cyclopent-2-enone-5-carboxylic esters 170 as single diastereoisomers in excellent yield, although the reaction failed with an aromatic substituent in the α-position (Scheme 46). An intramolecular C–H insertion reaction was applied in the total synthesis of (+)-przewalskin B, whereby the diazo compound 171 gave the spiro-2-cyclopentenone derivative 172 in good yield when treated with rhodium(II) acetate.

4 Transformations of Existing Cyclic Systems

As stated in the introduction, this review will not cover the extensive work done on the transformation of existing cyclopentanoid rings. However, there are some approaches to the title compound family that involve the reorganization of other, non-cyclopentane, ring systems. Two distinct categories of reactions can be identified. In one case, some masked chemical reactivity of the cyclic starting material is revealed upon treatment with a specific reagent. Often this implies a 1,4-dicarbonyl intermediate, which undergoes aldolization or crotonization, so there is some overlap with reactions discussed in the section above. In the second case, energetic factors are at play in the rearrangement of the ring system, either due to inherent ring strain or photochemical activation.

Rearrangements of Furans and Pyrans

Furans are an excellent source of 1,4-dicarbonyl compounds, and the literature on the preparation of these species and their transformations into 2-cyclopentenones up to the mid-1990s were reviewed extensively. Furans may be conveniently transformed into pyranones via the Achmatowicz reaction. Alternatively, sugars provide a facile entry to diverse pyran systems.

2-Furylcarbinols undergo isomerization to 4-hydroxy-2-cyclopentenones upon treatment with either Brønsted or Lewis acids, a process sometimes referred to as the Piancatelli rearrangement. The accepted mechanism involves a series of cationic intermediates, and a final 4π-electron ring closure, which ensures a trans configuration for the substituent at the 5-position (Scheme 47). In some cases, the acid medium (or more conveniently, basic treatment) induces further rearrangement to the more thermodynamically stable 2-substituted 4-hydroxy-2-cyclopentenones. Applications of such procedures continue to appear as part of multi-step syntheses.

In a large-scale (>0.1 mol) synthesis of 2-normisoprostol, a 2-furyl carbinol with an esterified alkyl chain 173 was transformed into the 4,5-disubstituted 2-cyclopentenone 174 (Scheme 48). Although the ester function was hydrolyzed during the reaction and the diastereoselectivity was not established, the yield was essentially quantitative, which was the key feature required of the transformation. The rearrangement of a series of representative furan substrates 175 was examined in water under microwave conditions (210 °C, 15 bar) without added catalyst: providing the substrate had some miscibility with water, reaction times of no more than 15 minutes were required for good conversions into the corresponding 2-cyclopentenones 176 with excellent anti diastereoselectivity.

Furandiols 177 were converted into fused 2-cyclopentenones 178 using a catalytic amount of Lewis acid in aqueous glyme (Scheme 49). The probable mechanism for this transformation was an acid-induced spiroketal formation, followed by hydrolysis to a 2-ene-1,4-dione. Intramolecular aldol condensation of this intermediate followed by intramolecular conjugate addition and finally dehydration furnished the bicyclic products.
An aza-Piancatelli rearrangement was established, where-by the treatment of 2-furylcarbinols 179 with an aniline in the presence of dysprosium(III) triflate as a catalyst provided a mild and direct method for the preparation of 4-arylamino-2-cyclopentenones 180 (Scheme 50). Only trans adducts were obtained and yields were mostly excellent, compromised only occasionally by a competing Friedel–Crafts alkylation of electron-rich anilines. Recently, aza-Piancatelli rearrangements were described using as little as 0.03 mol% of phosphomolybdic acid as the catalyst.129

Scheme 50

In related developments in this area, 2-furaldehyde 181 was treated with two equivalents of a secondary amine in the presence of a lanthanide(III) triflate to provide very high yields of the corresponding 4,5-diamino-2-cyclopentenones 182, free of the more thermodynamically stable 2,4-isomers (Scheme 51). Here again, a concerted ring-closure step was invoked to explain the exclusively trans stereoselectivity.130 Furans bearing donor–acceptor cyclopropane substituents 183 have also been used as substrates for the aza-Piancatelli rearrangement. The reaction proceeded with either primary or secondary anilines to provide the functionalized 2-cyclopentenones 184 in good yields. Excellent diastereoselectivity was also observed, except when an electron-poor aryl group was present on the cyclopropane substrate.131

Scheme 51

An unprecedented rearrangement was reported for a poly-functional tetrahydrofuran 185 which was transformed into cyclopentenone 186 simply upon standing for five days (Scheme 52). A mechanism involving an acid-induced series of intramolecular rearrangements proceeding via an acyclic pentadienial intermediate was proposed.132

Scheme 52

The mild amine-catalyzed rearrangement of pyranones 187 provided trans-4,5-dioxygenated 2-cyclopentenones 188, a reaction which was best explained in terms of an electrocyclic ring opening followed by a conrotatory 4π-electron cyclization (Scheme 53).133 A similar ring-con- traction process had been observed previously for some C2 and C4 ulopyranosides.134

Scheme 53

During the total syntheses of guanacaterenes A and E, a cyanohydrin lactone 189, obtained as a mixture of four diaste-reoisomers in several steps from (+)-carvone, was treated with an excess of lithium hexamethyldisilazide to provide a single isomer of a 2-hydroxy-2-cyclopentenone 190 in acceptable yield (Scheme 54). The proposed mechanism involved intramolecular attack of the nitrile-stabilized anion on the lactone to form an epoxycyclohexane, which then rearranged with expulsion of cyanide to give a 1,2-diketocyclopentane which tautomerized to the most stable enone structure.135

Scheme 54

A simple acid-mediated transformation of 3-methoxycarbonyl-2-methoxydihydropyran 191 into the correspond-ing 3-methoxycarbonyl-2-cyclopentenones 192 was discovered (Scheme 55). The proposed mechanism, sup-
ported by an isotopic labelling study, implied the initial elimination of methanol to give a 2H-pyran which underwent electrocyclic 6π ring-opening to a dienal ester. Prins cyclization followed by elimination of water and isomerization gave the products in moderate yields.136

A novel aza-variant of the pyran-ring-contraction approach has been established for the reaction of 4,6-dialkylglycals 193 with aromatic amines in the presence of indium bromide, to give \textit{trans}-2,5-dialkyl-4-arylamino-2-cyclopentenones 194 in fair to good yields (Scheme 56). A mechanism was proposed, whereby a Ferrier-type reaction produced a cyclic aminal intermediate which underwent indium-mediated ring opening, dehydration, then conrotatory 4π-electron ring closure.137

Reactions of Sugar Lactones

Over the years, ribosides and ribonolactone derivatives have been popular precursors for the preparation of 4,5-dioxogenated 2-cyclopentenones in single enantiomeric form. As part of a synthesis of

\begin{align*}
\text{Scheme 55}
\end{align*}

Ring Contractions

The photorearrangement of cyclohexa-2,5-dienones to bicyclo[3.1.0]hex-3-en-2-ones is a well-studied transformation, and was used to carry out formal syntheses of (±)-methyleneomycins A and B (Scheme 58). The masked \textit{p}-benzoquinones 204 were irradiated to furnish 2-cyclopentenones 205 or 206 with a carboxylic ester in either the 4- or 5-position, respectively. After the usual di-\textit{r}-methylene rearrangement from the excited state, the regioselectivity of the three-membered-ring bond fission of the bicyclic intermediate depends on the presence of a bridgehead substituent.141

\begin{align*}
\text{Scheme 56}
\end{align*}

\begin{align*}
\text{Scheme 57}
\end{align*}

\begin{align*}
\text{Scheme 58}
\end{align*}

Rearrangements of cyclohexa-2,4-dienones may also lead to 2-cyclopentenones. When solutions of selected masked \textit{p}-benzoquinones 207 in chloroform were treated with singlet oxygen followed by thiourea (a reducing agent), the anticipated endoperoxides were unexpectedly accompanied by 4-hydroxy-2-cyclopentenones 208; these latter products were the only ones obtained when the reactions

© Georg Thieme Verlag Stuttgart · New York

Synthesis 2014, 46, 1–24
were run in methanol (Scheme 59). This ring contraction was proposed to occur via initial formation of the perepoxide intermediate, which underwent an unusual [1,2]-acyl shift in a highly stereoselective manner.142

A popular way of conducting a cyclobutanone ring expansion is to prepare the corresponding spiroepoxide, then rearrange it using a Lewis acid. A suitably placed leaving group is necessary for the extra unsaturation present in 2-cyclopentenones (amongst other compounds) via these routes.143

It was proposed to occur via initial formation of the perepoxide intermediate, which underwent an unusual [1,2]-acyl shift in a highly stereoselective manner.142

The unique chemistry of squaric acid and its derivatives has been exploited for selective ring expansions to give 2-cyclopentenones framework. This reactivity was exploited to transform the dichloroketene adduct of 7-methylcycloheptatriene \(\text{Scheme 62} \) into a single hydroazulenone \(\text{Scheme 62} \) in 76% yield (Scheme 62).147 This compound was a key intermediate in the total synthesis of \((\pm)-6\)-deoxygeigerin and, later, of \((\pm)-geigerin.148

2,2-Dichlorocyclobutanes react with diazomethane via a regioselective ring-expansion followed by dehydrochlorination to give the 2-chloro-2-cyclopentenone framework. This reaction profiles were interpreted in terms of the relative migratory aptitudes of the acyl and alkyl groups involved.

An interesting regioselectivity issue was uncovered during studies on the ring expansion of 2-hydroxycyclobutanone aldol adducts \(\text{Scheme 61} \). With no other ring substituents, the skeletal rearrangement gave the 3-hydroxy-2-cyclopentenone \(\text{Scheme 61} \), which is a tautomer of the cyclic 1,3-diketone. On the other hand, with the corresponding 3,3-dimethylated cyclobutanones, the acid-mediated rearrangement gave the 2-hydroxy-2-cyclopentenone regioisomers \(\text{Scheme 63} \).146 These reaction profiles were interpreted in terms of the relative migratory aptitudes of the acyl and alkyl groups involved.

Ring Expansions

Cyclopropanes and cyclobutanes have considerable ring strain, so rearrangements involving expansion to a five-membered ring are energetically favored. Some reviews on small-ring chemistry have covered formation of 2-cyclopentenones (amongst other compounds) via these routes.143

The synthesis of \((\pm)-carbovir and \((\pm)-aristeromycin.144 A selection of protected 2-aminocyclobutanones \(\text{Scheme 60} \) were run in methanol (Scheme 59). This ring contraction was proposed to occur via initial formation of the perepoxide intermediate, which underwent an unusual [1,2]-acyl shift in a highly stereoselective manner.142

The unique chemistry of squaric acid and its derivatives has been exploited for selective ring expansions to give 2-cyclopentenones framework. This reactivity was exploited to transform the dichloroketene adduct of 7-methylcycloheptatriene \(\text{Scheme 62} \) into a single hydroazulenone \(\text{Scheme 62} \) in 76% yield (Scheme 62).147 This compound was a key intermediate in the total synthesis of \((\pm)-6\)-deoxygeigerin and, later, of \((\pm)-geigerin.148

2,2-Dichlorocyclobutanes react with diazomethane via a regioselective ring-expansion followed by dehydrochlorination to give the 2-chloro-2-cyclopentenone framework. This reactivity was exploited to transform the dichloroketene adduct of 7-methylcycloheptatriene \(\text{Scheme 62} \) into a single hydroazulenone \(\text{Scheme 62} \) in 76% yield (Scheme 62).147 This compound was a key intermediate in the total synthesis of \((\pm)-6\)-deoxygeigerin and, later, of \((\pm)-geigerin.148

The unique chemistry of squaric acid and its derivatives has been exploited for selective ring expansions to give 2-cyclopentenones (Scheme 63). Double addition of vinyl magnesium bromide to the derivatives \(\text{Scheme 63} \) proceeded in a 1,2/-1,4-fashion to give linear octatetraene species \(\text{Scheme 63} \), which upon selective protonation during work-up underwent cyclization to give the polynuclear derivatives \(\text{Scheme 63} \) in good yield in a one-pot operation.149
A ‘squatrate ester cascade’ protocol has been used to construct angular or linear triquinane sesquiterpene skeletons in an elegant fashion (Scheme 64). Sequential addition of two alkynyllithium species to diisopropyl squatrate 223 provided, irrespective of the geometry of the dienolate adduct, an intermediate which evolved first via eight-membered-ring closure to dienolate 224 then further via intramolecular aldol closure to give the linear tricyclic structure 225 in 24% yield (after acidic hydrolysis of the enol).150 On the other hand, the successive addition of an alkynyllithium to 223 proceeded via a helical dienolate which ring-closed via a strained intermediate structure 226; the latter then evolved via intramolecular enolate attack to close the fused five-membered ring of 227, in 68% yield. These ring-assembly protocols were exploited for the total synthesis of sesquiterpenes.

Scheme 64

1-Vinyl-1-silyloxy-2,2-dichlorocyclopanes 228, easily prepared from silyloxydienes, were treated with a silver(I) reagent to induce a sequential 2π ring opening and 4π-electron ring closure, the latter step being analogous to the Nazarov cyclization (Scheme 65). This process provided chloro-substituted 2-cyclopentenones 229 and 230 in variable proportions and reasonable yields, albeit with limited control of regio- and diastereoselectivities.151

Scheme 65

The ring expansion of alkynylcyclopanols 231 to provide 3-substituted 2-cyclopentenones 232 was achieved using a ruthenium catalyst in the presence of indium triflate and a Brønsted acid (Scheme 66). The reaction was successful with alkyl-substituted alkynes, for which an insertion mechanism via a ruthenium metallacycle was suggested. With more electron-deficient alkynes, notably acyl derivatives, the reaction evolved differently to give 2-vinylcyclobutanones.152

Scheme 66

A ring expansion of highly substituted epoxides bearing acetate and propargylic ester functions 233 was achieved using a platinum catalyst (Scheme 67). Even though syn/anti mixtures of the substrates were employed, the product 2-cyclopentenones 234 were obtained as single diastereoisomers. The proposed mechanism involved evolution of a metal–alkyne complex with acetate migration to form a platinum carbene, which reacted with the epoxide to form a pyran 235. An unprecedented tandem oxa-6π ring opening followed by platinum-mediated conrotatory 4π-electron ring closure accompanied by acetate transposition was proposed to explain the transformation of the pyran to give the final product 234.153 This reaction is clearly related to the Nazarov and Rautenstrauch cyclization reactions (vide supra).

Scheme 67

The treatment of the vicinal diol 236 with strong base provided the 2-cyclopentenone 237, reportedly in good yield (Scheme 68).154 The transformation is noteworthy as the first (and so far only) apparent example of an anionic oxy retro-ene reaction, giving in this case a diketone enolate which evolved by intramolecular aldol condensation.

Scheme 68
Finally, 1,1-disubstituted spiropanes 238 were converted into 2-cyclopentenones 239 in the presence of carbon monoxide and a rhodium catalyst (Scheme 69). The proposed mechanism involved evolution through a series of rhodacyles of increasing size, so that one of the original spiropanate carbons ended up as a methyl substituent in an exocyclic locus in the final structure.\(^{155}\) Two examples of cyclic-fused 1,2-disubstituted spiropanes also evolved in a similar fashion with retention of the ring junction stereochemistry, albeit in slightly lower yield.

\[\text{Scheme 69} \]

5 Miscellaneous Methods

A few reports of 2-cyclopentenone preparation cannot be conveniently classed in any of the above sections and are therefore collected in this final section.

The retro-Diels–Alder strategy for the preparation of substituted 2-cyclopentenones from the tetrahydro-4,7-methano-1-indanone skeleton was established some time ago, \(^{241}\) and the cracking conditions required to liberate the target structures can be somewhat restrictive. Nevertheless, an attractive feature of this approach is the relative ease of access to the starting materials. The approach therefore continues to enjoy some synthetic applications (Scheme 70). The preparation of the tri-substituted 2-cyclopentenone 241, a key building block for a proposed total synthesis of the diterpene antibiotic guanacasterpene A, was achieved via a flash vacuum pyrolysis (FVP) retro-Diels–Alder reaction of 240 in excellent yield.\(^{156}\) In the synthesis of selected phytoprostanes for evaluation as PPAR antagonists, a retro-Diels–Alder reaction was performed on tricyclic adduct 242 under mild conditions employing a Lewis acid and an excess of maleic anhydride to trap the cyclopentadiene by-product. The \(E\)-isomer of the 2-cyclopentenone product 243 predominated, regardless of the configuration (\(Z\) or \(E\)) of the substrate.\(^{157}\) Similarly, the use of zeolites serving as heterogeneous Bronsted acids facilitated the transformation of a series of tricyclic substrates 244 into 4-alkyl-2-cyclopentenones 245 under mild conditions.\(^{158}\)

The tandem \([2+2]\)-cycladdition–Dieckmann condensation of \(\gamma\)-keto esters 246 with lithium ynolates gave, in the first instance, bicyclic \(\beta\)-lactones 247, which readily eliminated carbon dioxide upon heating to provide 2,3-disubstituted 2-cyclopentenones 248 in a one-pot process (Scheme 71).\(^{155}\) An application of this protocol was made in the final step of a total synthesis of the triquinane natural product cucumin E (250) by transformation of the bicyclic precursor 249.\(^{160}\)

\[\text{Scheme 70} \]

\[\text{Scheme 71} \]

In a study of synthetic routes to prostanoids, an unusual tandem reaction process was discovered when selected aldehydes 251 were transformed into the pyrrolidine enamines and heated with 3-iodo-2-methoxymethoxy-1-propene. 4,4-Disubstituted 2-cyclopentenones 252 were formed directly, albeit in moderate yields, in what appeared to be an original domino aza-Claisen—Mannich cyclization, terminating in \(\beta\)-elimination of the secondary amine (Scheme 72). In several cases, the aldehyde substrate was a chiral sugar derivative but the spiro adducts were obtained without significant diastereomic excesses.\(^{161}\)

\[\text{Scheme 72} \]
4-Alkylidene-2-cyclopentenones 254 were prepared from unsaturated 1,4-diketones 253 and selected nitroalkanes in a mild tandem ring-closure–Michael addition–elimination process, with good yields and excellent E-stereoselectivity (Scheme 73).162 This is a surprisingly simple yet attractive route to the target compounds which can otherwise be difficult to prepare.

Scheme 73

An intriguing cascade reaction combining benzil (255) and two equivalents of an alkynyllithium has been described, in which it was proposed that the initial 1,5-hexadiyn-3,4-olate adduct evolved via an anionic oxy-Cope rearrangement then an intramolecular aldol condensation and a [1,2]-aryl shift, to give 2-phenyl-5-benzoyl-2-cyclopentenones 256 (Scheme 74). The reaction was substrate-dependent, for competing reaction pathways were evidenced, but several examples employing an aryl or alkyl acetylide proceeded in high yield. The 5-acyl-2-cyclopentenone products exhibited the expected keto–enol tautomeric equilibria.163

Finally, an unprecedented cyclotrimerization of α-mono-substituted aldehydes induced by dibromotriphenylphosphine has been described (Scheme 75).164 The proposed mechanism consisted of a series of Lewis acid mediated aldol condensations going via a propenal to give a pentadienal, which isomerized before cyclizing via a Nazarov-type process to give the 2,3,5-trisubstituted 2-cyclopentenone products 257. On this postulate, mixed condensations of aldehydes and enals were carried out using the same conditions to give the expected products 258.

Scheme 75

6 Conclusions

As this review shows, an ever-expanding array of synthetic methodologies is available for the synthesis of 2-cyclopentenones. Established reactions continue to be further developed while new approaches continue to emerge. Some developments emphasize the use of catalytic processes or benign reaction conditions, while others prioritize selectivity issues or other practicalities. A significant generality to emerge from this overview is that there is no one reaction which dominates the scene: the ‘best’ choice of synthesis for any given target will depend on a balance of many factors. Given the enduring importance of the title compounds and the efforts currently geared towards their synthesis, it seems likely that methodologies will continue to develop at a considerable pace.

Acknowledgment

One of us (H.E.) was the beneficiary of a PhD grant (French MESR Allocation) earmarked by Université Paris-Sud for bilateral international collaboration. The authors are grateful to the Ile-de-France region for travel funding (SETCI exchange programme).
(49) Langer, P.; Kracke, B. Synlett 2001, 1790.

(50) Tourég, J.; Prunet, J. Synlett 2006, 2807.

© Georg Thieme Verlag Stuttgart · New York
Synthesis 2014, 46, 1–24

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.