Key words

trifluoromethylthiolation
β-keto esters
quinine
X. WANG, T. YANG, X. CHENG, Q. SHEN* (SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, P. R. OF CHINA AND OAK RIDGE NATIONAL LABORATORY, USA)
Enantioselective Electrophilic Trifluoromethylthiolation of β-Ketoesters: A Case of Reactivity and Selectivity Bias for Organocatalysis
Angew. Chem. Int. Ed. 2013, 52, 12860-12864.

Organocatalytic Trifluoromethylthiolation of β-Keto Esters

$$
\text { er from 60:40 to } 98: 2
$$

89

Selected examples:

90% yield, er = 96:4

93% yield, er = 90:10

Reaction pathway:

88% yield, er $=98: 2$

Significance: A highly enantioselective trifluoromethylthiolation of β-keto esters is reported by Shen and co-workers. The reaction is catalyzed by quinine $\mathbf{1}$ or the quinine-derived phase-transfer catalyst 2. Good to excellent yields and enantioselectivities are obtained by utilizing different catalysts for different ring sizes of the β-keto esters. The free hydroxyl group of the catalyst is crucial for reactivity, and the SCF_{3}-substituted quaternary ammonium pathway was ruled out by control experiments. The proposed reaction pathway involves a dual activation, in which the catalyst activates both the β-keto ester and the SCF_{3} reagent via a double hydrogen bonding.
synfacts Contributors: Benjamin List, Qinggang Wang
Synfacts 2014, 10(1), 0094 Published online: 13.12.2013
DoI: 10.1055/s-0033-1340412; Reg-No.: B12513SF

Comment: The introduction of fluorine functional groups into different molecules is of great importance for the pharmaceutical and agrochemical industries. Here, the authors report a practical procedure for highly enantioselective trifluoromethylthiolation of β-keto esters. This methodology provides a straightforward way to build quaternary carbon centers with a SCF_{3} group, which potentially could lead to useful drug candidates. At the same time, Rueping and co-workers report a very similar study, but utilizing different SCF_{3} sources (T. Bootwicha, X. Liu, R. Pluta, I. Atodiresei, M. Rueping Angew. Chem. Int. Ed. 2013, 52, 12856).

[^0]
[^0]: 2014 © THIEME STUTTGART • NEW YORK

