Synthesis of Pyrrolidinones via α,β-Unsaturated Acylammonium Ions

Proposed catalytic cycle:

Significance: An asymmetric enantioselective Michael addition–proton transfer–lactamization or lactonization organocascade reaction is reported. The cinchona alkaloid derived catalysts 1 can generate chiral α,β-unsaturated acylammonium salts with crotonyl chlorides 2, giving pyrrolidinones, piperid-2-ones, and dihydropyridinones in good yields and high enantioselectivities.

Comment: In the first step, the lithiated enolate is formed to participate in a conjugate addition to the acylammonium species, which derives from reaction of the chiral tertiary amine (R3N) with the acid chloride. After an intra- or intermolecular proton transfer, the acylammonium species undergoes intramolecular lactamization to regenerate the tertiary amine catalyst R3N. The products could be transformed into known precursors of various biologically active compounds.

SYNFACTS Contributors: Benjamin List, Ji Hye Kim

SYNFACTS 2014, 10(1), 0088 Published online: 13.12.2013
DOI: 10.1055/s-0033-1340408; Reg-No.: B12113SF