C. ROSSY, J. MAJIMEL, E. FOUQUET, C. DELACÔTE, M. BOUJTITA, C. LABRUGÈRE, M. TRÉGUER-DELAPIERRE,* F.-X. FELPIN* (UNIVERSITÉ DE NANTES, UNIVERSITÉ DE BORDEAUX, TALENCE AND UNIVERSITÉ DE BORDEAUX, PESSAC, FRANCE)
Stabilisation of Carbon-Supported Palladium Nanoparticles through the Formation of an Alloy with Gold: Application to the Sonogashira Reaction
Chem. Eur. J. 2013, 19, 14024–14029.

Sonogashira Coupling with Bimetallic Pd-Au Nanoparticles on Carbon

Significance: Bimetallic palladium—gold nanoparticles on carbon (Pd–Au/C) were prepared by treatment of a mixture of Pd(OAc)₂, KAuCl₄ and charcoal in methanol with H₂ (eq. 1). Pd–Au/C catalyzed the Sonogashira coupling of aryl iodides with terminal alkynes under copper-free conditions to give the corresponding diaryl alkynes in up to 95% yield (18 examples, eq. 2).

Comment: The Pd–Au/C nanoparticles were characterized by TEM, XRD, STEM-EDX, XPS and CV analyses. Though the catalytic activity of fresh Pd–Au/C was similar to that of fresh Pd/C, Pd–Au/C showed high stability during the recycling experiments (eq. 3). TEM analysis showed that the morphology of the recovered Pd–Au/C was unchanged after the third run.

SYNFACTS Contributors: Yasuhiro Uozumi, Hiroaki Tsuji Synfacts 2014, 10(1), 0103 Published online: 13.12.2013 **DOI:** 10.1055/s-0033-1340382; **Reg-No.:** Y13513SF

Category

Polymer-Supported Synthesis

Key words

bimetallic palladium gold nanoparticles

carbon

Sonogashira coupling

aryl iodides

alkynes

103