Synlett 2014; 25(3): 407-410
DOI: 10.1055/s-0033-1340331
letter
© Georg Thieme Verlag Stuttgart · New York

A Microwave-Assisted Three-Component Synthesis of Arylaminomethyl ­Acetylenes: A Facile Access to Terminal Alkynes

Yubo Jiang*
a   Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Fax: +86(871)65312526   Email: ybjiang@kmust.edu.cn
,
Shaojun Huang
b   Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 31 August 2013

Accepted after revision: 06 November 2013

Publication Date:
06 December 2013 (online)


Abstract

A simple, rapid, one-pot synthesis of arylaminomethyl acetylenes is achieved under microwave-assisted conditions (power = 5 W) using aromatic boronic acids, aqueous ammonia, propargyl halides, copper(I) oxide and water as the solvent. The reactions are complete within ten minutes affording good to excellent yields of the products.

Supporting Information

 
  • References and Notes

    • 1a Mo D, Dai L, Hou X. Tetrahedron Lett. 2009; 50: 5578
    • 1b Holub JM, Kirshenbaum K. Chem. Soc. Rev. 2010; 39: 1325
    • 1c Majumdar KC, Nandi RK, Ganai S, Taher A. Synlett 2011; 116
    • 1d Chen Z, Ye D, Qian Y, Ye M, Liu L. Tetrahedron 2013; 69: 6116
    • 1e Bew S, Hiatt-Gipson G, Lovell JA, Poullain C. Org. Lett. 2012; 14: 456
    • 1f Dong Z, Ye Z. Macromolecules 2012; 45: 5020
    • 1g Onishi N, Shiotsuki M, Masuda T, Sano N, Sanda F. Organometallics 2013; 32: 846
    • 1h Johnson DG, Lynam JM, Mistry NS, Slattery JM, Thatcher RJ, Whitwood AC. J. Am. Chem. Soc. 2013; 135: 2222
    • 1i Zhou B, Chen H, Wang C. J. Am. Chem. Soc. 2013; 135: 1264
    • 2a Holman M, Williamson N, Ward A. Aust. J. Chem. 2005; 58: 368
    • 2b Bhayana B, Fors BP, Buchwald SL. Org. Lett. 2009; 11: 3954
    • 2c Akula HK, Lakshman MK. J. Org. Chem. 2012; 77: 8896
    • 2d Velasco BE, Lopez-Tellez G, Gonzalez-Rivas N, Garcia-Orozco I, Cuevas-Yanez E. Can. J. Chem. 2013; 91: 292
    • 2e Zarei A, Khazdooz L, Hajipour AR, Aghaei H, Azizi G. Synthesis 2012; 44: 3353
    • 2f Zarei A. Tetrahedron Lett. 2012; 53: 5176
    • 2g Wang K, Bi X, Xing S, Liao P, Fang Z, Meng X, Zhang Q, Liu Q, Ji Y. Green Chem. 2011; 13: 562
    • 2h Kumar D, Reddy V. Synthesis 2010; 1687
    • 2i Huang Z, Wang R, Sheng S, Zhou R, Cai M. React. Funct. Polym. 2013; 73: 224
    • 2j Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
    • 2k Xu M, Kuang C, Wang Z, Yang Q, Jiang Y. Synthesis 2011; 223
    • 2l Jiang Y, Kuang C, Yang Q. Tetrahedron 2011; 67: 289
    • 2m Wu L, Xie Y, Chen Z, Niu Y, Liang Y. Synlett 2009; 1453
    • 2n Zhang W, Kuang C, Yang Q. Res. Chem. Intermed. 2012; 38: 37
    • 3a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
    • 3b Abu Sohel MdS, Liu S.-R. Chem. Soc. Rev. 2009; 38: 2269
    • 3c Liu Y, Wang C, Wang X, Wan J. Tetrahedron Lett. 2013; 54: 3953
    • 3d Bai D, Li C, Li J, Jia X. Chin. J. Org. Chem. 2012; 32: 994
    • 3e Niu X, Li C, Li J, Jia X. Tetrahedron Lett. 2012; 53: 5559
    • 3f Li L, Nan C, Peng Q, Li Y. Chem. Eur. J. 2012; 18: 10491
    • 3g Weng Z, Li H, He W, Yao L, Tan J, Chen J, Yuan Y, Huang K. Tetrahedron 2012; 68: 2527
    • 3h Patil SS, Jadhav RP, Patil SV, Bobade VD. Tetrahedron Lett. 2011; 52: 5617
    • 3i Nie X, Liu S, Zong Y, Sun P, Bao J. J. Organomet. Chem. 2011; 696: 1570
    • 3j Xu H, Gu S, Chen W, Li D, Dou J. J. Org. Chem. 2011; 76: 2448
    • 4a Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
    • 4b Wang Z, Campagna S, Yang K, Xu G, Pierce ME, Fortunak JM, Confalone PN. J. Org. Chem. 2000; 65: 1889
    • 4c Quesada E, Taylor RJ. K. Tetrahedron Lett. 2005; 46: 6473
    • 4d Quesada E, Raw SA, Reid M, Roman E, Taylor RJ. K. Tetrahedron 2006; 62: 6673
  • 5 Aitken R, Seth S. Synlett 1990; 211
  • 6 Dickson HD, Smith SC, Hinkle KW. Tetrahedron Lett. 2004; 45: 5597
    • 7a Makosza M, Chesnokov AA. Tetrahedron 2002; 58: 7295
    • 7b Makosza M, Chesnokov AA. Tetrahedron 2003; 59: 1995
    • 7c Kuang C, Yang Q, Senboku H, Tokuda M. Tetrahedron 2005; 61: 4043
    • 7d Okutani M, Mori Y. J. Org. Chem. 2009; 74: 442
    • 7e Cheng X, Jun J, Kuang C. Chin. J. Chem. 2011; 29: 2350
    • 7f Shenawi-Khalil S, Sonavane SU, Sasson Y. Tetrahedron Lett. 2012; 53: 2295
    • 7g Zhao M, Kuang C, Yang Q, Cheng X. Tetrahedron Lett. 2011; 52: 992
    • 8a Vasilevsky SF, Klyatskaya SV, Elguero J. Tetrahedron 2004; 60: 6685
    • 8b Wang Y, Huang B, Sheng S, Cai M. J. Chem. Res. 2007; 728
    • 8c Hao W, Wang Y, Sheng S, Cai M. J. Chem. Res. 2008; 615
    • 8d Park K, Bae G, Moon J, Choe J, Song KH, Lee S. J. Org. Chem. 2010; 75: 6244
    • 8e Park K, Palani T, Pyo A, Lee S. Tetrahedron Lett. 2012; 53: 733
  • 9 Li J, Huang P. Beilstein J. Org. Chem. 2011; 7: 426
  • 10 Rao H, Fu H, Jiang Y, Zhao Y. Angew. Chem. Int. Ed. 2009; 48: 1114
  • 11 Compounds 4; General Procedure To a microwave reaction tube were added aromatic boronic acid 1 (0.5 mmol), ammonia (2) (0.6 mmol, 25% aq solution), propargyl halide 3 (0.5 mmol), K2CO3 (138 mg, 1 mmol), and H2O (2 mL). The reaction was conducted under microwave irradiation (5 W, CEM Discover-SP) for 10 min (with monitoring by TLC). After completion, the mixture was diluted with H2O (30 mL) and then extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with H2O (3 × 10 mL) and brine (3 × 10 mL), and then dried over anhydrous Na2SO4. Evaporation of the solvent provided a crude residue, which was subjected to column chromatography over silica gel (EtOAc–PE, 1:8→1:3) to afford arylaminomethyl acetylene 4. 4-Methyl-N-(prop-2-ynyl)aniline (4a) Yield: 64 mg (88%); yellow oil. IR (KBr): 3397, 3289, 1616, 1519, 1482, 809 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.03 (d, J = 8.18 Hz, 2 H), 6.62 (d, J = 8.27 Hz, 2 H), 3.91 (d, J = 2.22 Hz, 2 H), 3.73 (s, 1 H), 2.25 (s, 3 H), 2.20 (s, 1 H). 2a N-(Prop-2-ynyl)aniline (4b) Yield: 56 mg (86%); yellow oil. IR (KBr): 3405, 3288, 1505, 1440, 752 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.22 (t, J = 7.89 Hz, 2 H), 6.79 (t, J = 7.33 Hz, 1 H), 6.69 (d, J = 7.85 Hz, 2 H), 3.94 (d, J = 2.25 Hz, 2 H), 3.87 (s, 1 H), 2.21 (s, 1 H).1c