Synlett 2013; 24(20): 2758-2762
DOI: 10.1055/s-0033-1340150
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Triggered Oxidative C–H Aryloxylation of Phenolic Amidines; Photocatalytic Preparation of 2-Aminobenzoxazoles

Vishnu P. Srivastava*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: prabhaker7777@yahoo.com   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: prabhaker7777@yahoo.com   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 04 August 2013

Accepted after revision: 15 September 2013

Publication Date:
05 November 2013 (online)


Abstract

Visible light efficiently mediates an intramolecular cyclization reaction of o-hydroxy-N-aryl-N,N-dialkylformamidines (phenolic amidines) leading to 2-aminobenzoxazole derivatives in the presence of only 1 mol% tris(2,2′-bipyridine)ruthenium(II) as a photoredox catalyst along with air as terminal oxidant. The protocol involves oxidative functionalization of an amidinic C–H bond to a C–O bond and affords excellent yields of products in a simple one-pot operation under mild conditions. The method represents the first example of an oxidative C–H aryloxylation reaction implementing visible-light-driven aerobic photoredox catalysis.

 
  • References

  • 1 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 2 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 3 Narayanam JM. R, Tucker JW, Stephenson CR. J. Am. Chem. Soc. 2009; 131: 8756

    • For photophysical and redox properties of Ru2+, see:
    • 4a Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 4b Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Zelewsky AV. Coord. Chem. Rev. 1988; 84: 85
    • 4c Kalyanasundaram K. Coord. Chem. Rev. 1982; 46: 159
    • 4d Bock CR, Connor JA, Gutierrez AR, Meyer TJ, Whitten DG, Sullivan BP, Nagle JK. J. Am. Chem. Soc. 1979; 101: 4815

      For leading reviews on visible-light photoredox catalysis, see:
    • 5a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5b Xi Y, Yia H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 5c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 5d Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 5e Teply F. Collect. Czech. Chem. Commun. 2011; 76: 859
    • 5f Yoon TP, Ischay MA, Du J. Nature Chem. 2010; 2: 527
    • 5g Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785

      For initial work on photoreduction of Ru2+ polypyridyl complexes by amines, see:
    • 6a DeLaive PJ, Foreman TK, Giannotti C, Whitten DG. J. Am. Chem. Soc. 1980; 102: 5627
    • 6b DeLaive PJ, Lee JT, Sprintschnik HW, Abruna H, Meyer TJ, Whitten DG. J. Am. Chem. Soc. 1977; 99: 7094

      For selected recent examples on photoreduction of Ru2+ by using sacrificial amines as electron donors, see:
    • 7a Zou Y.-Q, Chen J.-R, Liu X.-P, Lu L.-Q, Davis RL, Jørgensen KA, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 7b Furst L, Narayanam JM. R, Stephenson CR. J. Angew. Chem. Int. Ed. 2011; 50: 9655
    • 7c Hurtley AE, Cismesia MA, Ischay MA, Yoon TP. Tetrahedron 2011; 67: 4442
    • 7d Du J, Espelt LR, Guzei IA, Yoon TP. Chem. Sci. 2011; 2: 2115
    • 7e Tucker JW, Nguyen JD, Narayanam JM. R, Krabbe SW, Stephenson CR. J. Chem. Commun. 2010; 46: 4985
    • 7f Furst L, Matsuura BS, Narayanam JM. R, Tucker JW, Stephenson CR. J. Org. Lett. 2010; 12: 3104
    • 7g Du J, Yoon TP. J. Am. Chem. Soc. 2009; 131: 14604

      For recent developments on nitrogen radical cation chemistry derived from non-sacrificial amines under visible-light photoredox catalysis, see:
    • 8a Maity S, Zheng N. Synlett 2012; 23: 1851
    • 8b Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 8c Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 8d DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 8e Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
    • 8f Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 9a Xuan J, Cheng Y, An J, Lu L.-Q, Zhang X.-X, Xiao W.-J. Chem. Commun. 2011; 47: 8337
    • 9b Xuan J, Feng Z.-J, Duan S.-W, Xiao W.-J. RSC Adv. 2012; 2: 4065
    • 9c Mathis CL, Gist BM, Fredorickson CK, Medkiff KM, Marvin CC. Tetrahedron Lett. 2013; 54: 2101
  • 10 Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
    • 11a Armstrong A, Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
    • 11b Sato Y, Yamada M, Yoshida S, Soneda T, Ishikawa M, Nizato T, Suzuki K, Konno F. J. Med. Chem. 1998; 41: 3015
    • 11c Yoshida S, Watanabe T, Sato Y. Bioorg. Med. Chem. 2007; 15: 3515
    • 11d Cheung M, Harris P, Hasegawa M, Ida S, Kano K, Nishigaki N. PCT WO 02/44156A2, 2002 ; Chem. Abstr. 2002, 137, 1679.
    • 12a Lok R, Leone RE, Williams AJ. J. Org. Chem. 1996; 61: 3289
    • 12b Haviv F, Ratajczyk JD, DeNet RW, Kerdesky FA, Walters RL, Schmidt SP, Holms JH, Young PR, Carter GW. J. Med. Chem. 1988; 31: 1719
    • 13a El-Faham A, Chebbo M, Abdul-Ghani M, Younes G. J. Heterocycl. Chem. 2006; 43: 599
    • 13b Cioffi CL, Lansing JJ, Yuksel H. J. Org. Chem. 2010; 75: 7942
    • 13c Khatik GL, Dube N, Pal A, Nair VA. Synth. Commun. 2011; 41: 2631 ; and references cited therein
    • 14a Guo S, Qian B, Xie Y, Xia C, Huang H. Org. Lett. 2011; 13: 522 ; and references cited therein
    • 14b Kawano T, Hirano K, Satoh T, Masahiro M. J. Am. Chem. Soc. 2010; 132: 6900
    • 14c Cho SH, Kim JY, Lee SY, Chang S. Angew. Chem. Int. Ed. 2009; 48: 9127
    • 14d Wertz S, Kodama S, Studer A. Angew. Chem. Int. Ed. 2011; 50: 11511
    • 15a Joseph J, Kim JY, Chang S. Chem. Eur. J. 2011; 17: 8294
    • 15b Wagh YS, Tiwari NJ, Bhaage BM. Tetrahedron Lett. 2013; 54: 1290

      For selected reviews on oxidative reactions with molecular oxygen, see:
    • 16a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 16b Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 17a Sun H, Yang C, Gao F, Li Z, Xia W. Org. Lett. 2013; 14: 624
    • 17b Cai S, Zhao X, Wang X, Liu Q, Li Z, Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
    • 17c Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
    • 17d Su Y, Zhang L, Jiao N. Org. Lett. 2011; 13: 2168

      For recent developments in visible-light photoredox organocatalysis, see:
    • 18a Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 18b Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
    • 19a Yadav AK, Srivastava VP, Yadav LD. S. Chem. Commun. 2013; 49: 2154
    • 19b Srivastava VP, Yadav AK, Yadav LD. S. Synlett 2013; 24: 465
    • 19c Srivastava VP, Patel R, Yadav LD. S. Adv. Synth. Catal. 2011; 353: 695
    • 19d Srivastava VP, Patel R, Garima; Yadav LD. S. Chem. Commun. 2010; 46: 5808
    • 19e Yadav LD. S, Srivastava VP, Patel R. Tetrahedron Lett. 2009; 50: 1411
    • 19f Yadav LD. S, Patel R, Srivastava VP. Synlett 2008; 583
  • 20 The LEDs are commercially available and purchased directly from Luxeon Star LEDs Quadica Developments Inc. 47 6th Concession Rd. Brantford, Ontario N32 5L7, Canada (http://www.luxeonstar.com).
  • 21 General Procedure for the Synthesis of 2-Aminobenzoxazoles 2: To an open flask containing a solution of o-hydroxy-N-aryl-N,N-dialkylformamidine 1 (0.5 mmol) in nitromethane (3 mL), was added [Ru(bpy)3]Cl2·6 H2O (1 mol%, 3.8 mg, 0.005 mmol) and the mixture was irradiated through the flask’s bottom side at a distance of approximately 4 cm by using Luxeon Rebel high-power blue LEDs (ref. 20) [4.45 W, λmax= 447.5 nm] with stirring under an air atmosphere (but no air bubbling) at r.t. for 18 h. After completion of the reaction (indicated by TLC), solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel 200–300 (hexane–EtOAc, 10:1 to 5:1) to afford the pure product 2. All the products are known compounds and were characterized by comparison of their melting point and spectral data with those reported in the literature (see refs. 14 and 15). As a typical example, the data of compound 2a are given: 2-(Piperidin-1-yl)benzo[d]oxazole (2a; Scheme 2): Yield: 91 mg (90%); pale-yellow solid; mp 72–74 °C [Lit. (ref. 14b) 74–75 °C]. 1H NMR (400 MHz, CDCl3): δ = 7.32 (d, J = 7.8 Hz, 1 H, ArH), 7.24 (d, J = 7.8 Hz, 1 H, ArH), 7.12 (dt, J = 7.6, 0.9 Hz, 1 H, ArH), 6.98 (dt, J = 7.6, 0.9 Hz, 1 H, ArH), 3.63–3.67 (br s, 4 H), 1.68 (br s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 162.2, 148.7, 143.5, 123.9, 120.2, 115.9, 108.6, 46.6, 25.2, 24.0. IR (KBr): 2870, 1660, 1581, 1455, 1242, 1114, 798, 759, 740 cm–1. MS (EI): m/z = 203 [M+1]. Anal. Calcd for C12H14N2O: C, 71.26; H, 6.98; N, 13.85. Found: C, 71.55; H, 6.63; N, 14.02.
    • 22a Rene A, Abasq M.-L, Hauchard D, Hapiot P. Anal. Chem. 2010; 82: 8703
    • 22b Campbell JM, Xu H.-C, Moellar KD. J. Am. Chem. Soc. 2012; 134: 18338
    • 22c Hawkins CL, Davies MJ. J. Chem. Soc., Perkin Trans. 2 1998; 1937
  • 23 One-Pot Synthesis of 2-(Piperidin-1-yl)benzo[d]oxazole (2a) Directly from Benzoxazole 9 (Scheme 3); Typical Procedure: To an open flask charged with benzoxazole 9 (59.7 mg, 0.5 mmol), was added piperidine (98.8 μL, 1 mmol), and the reaction mixture was stirred under neat conditions for 10 min at r.t. under air. After confirming complete conversion by TLC, the reaction mixture was diluted with nitromethane (3 mL), followed by addition of [Ru(bpy)3]Cl2·6H2O (1 mol%, 3.8 mg, 0.005 mmol). The mixture was irradiated through the flask’s bottom side at a distance of approximately 4 cm by using Luxeon Rebel high-power blue LEDs (ref. 20) [4.45 W, λmax= 447.5 nm] with stirring under an air atmosphere (but no air bubbling) at r.t. for 26 h. The product 2a (87.0 mg, 86%) was isolated by following the same work up and purification procedure described in ref. 21.