Synlett 2013; 24(20): 2691-2694
DOI: 10.1055/s-0033-1339926
letter
© Georg Thieme Verlag Stuttgart · New York

Short, Enantioselective Total Syntheses of Fugomycin and Desoxyfugomycin via Sonogashira Alkynylation of α-Bromobutenolides

John Boukouvalas*
Département de Chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada   Fax: +1(418)6567916   Email: john.boukouvalas@chm.ulaval.ca
,
Nicolas Bruneau-Latour
Département de Chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada   Fax: +1(418)6567916   Email: john.boukouvalas@chm.ulaval.ca
› Author Affiliations
Further Information

Publication History

Received: 11 July 2013

Accepted after revision: 12 September 2013

Publication Date:
28 October 2013 (online)


Abstract

The potent antifungal antibiotics (+)-fugomycin and (+)-desoxyfugomycin were synthesized in 3–4 steps with high overall efficiency (51–53%) and optical purity (ee > 97%). The syntheses illustrate a highly effective protocol for accomplishing racemization-free Sonogashira coupling of chiral α-bromobutenolides, and the usefulness of the Movassaghi–Jacobsen method for preparing the latter from epoxides.

Supporting Information

 
  • References and Notes

  • 1 Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf H.-J, van Pée K.-H. Pest Manag. Sci. 2000; 45: 688
    • 2a Gamard P, Sauriol F, Benhamou N, Bélanger RR, Paulitz TC. J. Antibiot. 1997; 50: 742
    • 2b Paulitz T, Nowak-Thompson B, Gamard P, Tsang E, Loper J. J. Chem. Ecol. 2000; 26: 1515
    • 3a Deora A, Hatano E, Tahara S, Hashidoko Y. Plant Pathol. 2010; 59: 84
    • 3b Nakano S, Sakane W, Oinaka H, Fujimoto Y. Bioorg. Med. Chem. 2006; 14: 6404
    • 4a Braun M, Hohmann A, Rahematpura J, Bühne C, Grimme S. Chem. Eur. J. 2004; 10: 4584
    • 4b Braun M, Rahematpura J, Bühne C, Paulitz TC. Synlett 2000; 1070
  • 5 Deore PS, Argade NP. J. Org. Chem. 2012; 77: 739
  • 6 Ramesh S, Nagarajan R. Synthesis 2011; 3307

    • For summaries of the growing interest in the use of natural products in crop protection, see:
    • 7a Nising CF, Hillebrand S, Rodefeld L. Chem. Commun. 2011; 47: 4062
    • 7b Hüter PF. Phytochem. Rev. 2011; 10: 185
    • 7c Dayan FE, Cantrell CL, Duke SO. Bioorg. Med. Chem. 2009; 17: 4022
    • 7d Varejão EV. V, Demuner AJ, Barbosa LC. A, Barreto RW. Crop Prot. 2013; 48: 41

      For enantioselective routes to related butenolides, see:
    • 8a Liao B, Negishi E. Heterocycles 2000; 52: 1241
    • 8b Richecœur AM. E, Sweeney JB. Tetrahedron 2000; 56: 389
    • 8c Johansson M, Köpcke B, Anke H, Sterner O. Tetrahedron 2002; 58: 2523
    • 8d Gallagher WP, Maleczka RE. Jr. J. Org. Chem. 2003; 68: 6775
    • 8e Lebel H, Parmentier M. Org. Lett. 2007; 9: 3563
    • 8f Trost BM, Quintard A. Org. Lett. 2012; 14: 4698
    • 8g Trost BM, Burns AC, Bartlett MJ, Tautz T, Weiss AH. J. Am. Chem. Soc. 2012; 134: 1474
    • 8h Hwang S, Kim JH, Kim HS, Kim S. Eur. J. Org. Chem. 2011; 7414
    • 8i Ghobril C, Kister J, Baati R. Eur. J. Org. Chem. 2011; 3416
    • 8j Ferrarini RS, Dos Santos AA, Comasseto JV. Tetrahedron 2012; 68: 10601
    • 8k Yu J, Chen W.-J, Gong L.-Z. Org. Lett. 2010; 12: 4050
    • 8l Kobayashi K, Naka H, Wheatley AE. H, Kondo Y. Org. Lett. 2008; 10: 3375
    • 8m Li S, Miao B, Yuan W, Ma S. Org. Lett. 2013; 15: 977
    • 8n Kondoh A, Arlt A, Gabor B, Fürstner A. Chem. Eur. J. 2013; 19: 7731
    • 8o Dixon DJ, Ley SV, Reynolds DJ. Chem. Eur. J. 2002; 8: 1621

      For butenolide syntheses from this group, see:
    • 9a Boukouvalas J, Pouliot M. Synlett 2005; 343
    • 9b Boukouvalas J, Wang J.-X, Marion O, Ndzi B. J. Org. Chem. 2006; 71: 6670
    • 9c Boukouvalas J, Robichaud J, Maltais F. Synlett 2006; 2480
    • 9d Boukouvalas J, Marion O. Synlett 2006; 1511
    • 9e Boukouvalas J, Wang J.-X, Marion O. Tetrahedron Lett. 2007; 48: 7747
    • 9f Boukouvalas J, Beltrán PP, Lachance N, Côté S, Maltais F, Pouliot M. Synlett 2007; 219
    • 9g Boukouvalas J, McCann LC. Tetrahedron Lett. 2010; 51: 4636
    • 9h Boukouvalas J, McCann LC. Tetrahedron Lett. 2011; 52: 1202
    • 9i Boukouvalas J, Albert V. Tetrahedron Lett. 2012; 53: 3027
    • 9j Boukouvalas J, Albert V, Loach RP, Lafleur-Lambert R. Tetrahedron 2012; 68: 9592
    • 10a Kate AS, Aubry I, Tremblay ML, Kerr RG. J. Nat. Prod. 2008; 71: 1977
    • 10b Rodríguez AD, Soto JJ. Chem. Pharm. Bull. 1996; 44: 91
    • 10c Gutierrez AB, Oberti JC, Hertz W. Phytochemistry 1988; 27: 938
    • 10d Li Y, Pattenden G. Tetrahedron Lett. 2011; 52: 2088
    • 11a Sonogashira K. J. Organomet. Chem. 2002; 653: 46
    • 11b Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979
    • 11c Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
  • 12 Movassaghi M, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 2456
  • 13 Boukouvalas J, Loach RP. J. Org. Chem. 2008; 73: 8109
  • 14 Mathews CJ, Taylor J, Tyte MJ, Worthington PA. Synlett 2005; 538

    • For the few isolated examples scattered in the literature, see:
    • 15a Bellina F, Falci E, Rossi R. Tetrahedron 2003; 59: 9091
    • 15b Zhu H.-T, Wang L.-J, Ji K.-G, Liu X.-Y, Liang Y.-M. Chem. Asian J. 2012; 7: 1862
    • 15c See also: Ngi SI, Cherry K, Héran V, Commeiras L, Parrain J.-L, Duchêne A, Abarbi M, Thibonnet J. Chem. Eur. J. 2011; 17: 13692
  • 16 Reddy LR, Corey EJ. Tetrahedron Lett. 2005; 46: 927

    • For examples, see:
    • 17a Fazio F, Schneider MP. Tetrahedron: Asymmetry 2000; 11: 1869
    • 17b Duffy RJ, Morris KA, Vallakati R, Zhang W, Romo D. J. Org. Chem. 2009; 74: 4772
    • 17c Lü B, Fu C, Ma S. Chem. Eur. J. 2010; 16: 6434
  • 18 Data for (S)-7a: [α]D 22 +45.6 (c 0.94, CHCl3) {Lit.4a [α]D 20 +50.3 (c 0.98, CHCl3); for (R)-7a: Lit.4a [α]D 20 –46.5 (c 0.9, CHCl3)}. The optical purity (ee > 98%) was determined by HPLC analysis [ChiralCel OD-H; n-hexane–i-PrOH, 90:10; 0. 5 mL/min; t R = 17.1 (major), 17.8 (minor) min]. Its NMR spectra were the same as those reported13 for rac-7a.
  • 19 Racemic 7b was prepared from β-angelica lactone14 by using Krafft’s iodination-elimination procedure [I2 (2 equiv), K2CO3 (1.2 equiv), DMAP (1.0 equiv), THF–H2O (1:1), r.t., 24 h, 24% yield; see also: Krafft, M. E.; Cran, J. W. Synlett 2005, 1263. Data for 7b: colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 1.6 Hz, 1 H), 5.10 (qd, J = 6.8, 1.6 Hz, 1 H), 1.46 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.1, 162.3, 85.5, 81.9, 18.8. HRMS (ESI): m/z [M + H]+ calcd for C5H6IO2: 224.9413; found: 224.9388.
  • 20 Boukouvalas J, Côté S, Ndzi B. Tetrahedron Lett. 2007; 48: 105
    • 21a Reddy RS, lguchi S, Kobayashi S, Hirama M. Tetrahedron Lett. 1996; 37: 9335
    • 21b Kobayashi S, Reddy RS, Sugiura Y, Sasaki D, Miyagawa N, Hirama M. J. Am. Chem. Soc. 2001; 123: 2887
    • 21c Lemay AB, Vulic KS, Ogilvie WW. J. Org. Chem. 2006; 71: 3615
  • 22 Boukouvalas J, Albert V. Synlett 2011; 2541
  • 23 Hundertmark T, Littke AF, Buchwald SL, Fu GC. Org. Lett. 2000; 2: 1729
  • 24 Synthesis of Alkynylbutenolide (S)-8: A flame-dried vial charged with bromide 7a (50.2 mg, 0.284 mmol), Pd(PPh3)2Cl2 (19.4 mg, 0.028 mmol, 0.1 equiv) and CuI (8.1 mg, 0.042 mmol, 0.15 equiv) was placed under vacuum for 20 min and then purged with nitrogen. Degassed 1,4-dioxane (3 mL) was added and the mixture was stirred under nitrogen for 0.5 h at r.t., after which, degassed Hünig’s base (140 μL, 0.847 mmol, 3.0 equiv) and 1-hexyne (95 μL, 0.847 mmol, 3.0 equiv) were slowly added by using a cannula. The mixture was stirred at r.t. for 1.5 h, filtered through a small pad of Celite and activated charcoal (EtOAc rinsing), concentrated, and purified by flash chromatography (EtOAc–hexanes, 2%) to furnish (S)-8 (39.8 mg, 79%) as a pale-yellow oil. Rf = 0.40 (EtOAc–hexanes, 20%); [α]D 22 +34.9 (c 0.85, CHCl3); ee > 97% [HPLC: ChiralCel AD-H; n-hexane–i-PrOH, 98:2; 0.4 mL/min; t R = 39.1 (major), 41.1 (minor) min]. 1H NMR (400 MHz, CDCl3): δ = 7.33 (d, J = 1.8 Hz, 1 H), 5.11 (qd, J = 6.8, 1.8 Hz, 1 H), 2.40 (t, J = 7.1 Hz, 2 H), 1.58 (m, 4 H), 1.44 (d, J = 6.8 Hz, 3 H), 0.92 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.9, 155.1, 118.6, 98.9, 78.1, 70.1, 30.5, 22.2, 19.5, 19.1, 13.8. HRMS (ESI): m/z [M + H]+ calcd for C11H15O2: 179.1072; found: 179.1080.
    • 25a Fürstner A, Dierkes T, Thiel OR, Blanda G. Chem. Eur. J. 2001; 7: 5286
    • 25b Bayer A, Maier ME. Tetrahedron 2004; 60: 6665
    • 25c Yadav JS, Rajender V. Eur. J. Org. Chem. 2010; 2148
    • 25d Smith III AB, Dong S, Fox RJ, Brenneman JB, Vanecko JA, Maegawa T. Tetrahedron 2011; 67: 9809
    • 26a Chang J, Paquette LA. Org. Lett. 2002; 4: 253
    • 26b Kumar P, Naidu SV, Gupta P. J. Org. Chem. 2005; 70: 2843
    • 26c Naidu SV, Gupta P, Kumar P. Tetrahedron 2007; 65: 7624
  • 27 Pouwer RH, Schill H, Williams CM, Bernhardt PV. Eur. J. Org. Chem. 2007; 4699
  • 28 Synthesis of (S)-(+)-Desoxyfugomycin 2: To a solution of alkynylbutenolide (S)-8 (42.4 mg, 0.238 mmol) in MeOH (4 mL) was added 5% Pd/BaSO4 (1 mg), followed by a solution of pyridine in MeOH (830 μL, 0.014 mmol, 0.06 equiv). The vessel was flashed with hydrogen gas and the mixture was shaken under 3 atm of hydrogen at r.t. for 8 h, after which time, over 90% conversion into 2 had occurred according to NMR spectroscopic analysis. After filtration of the mixture over a Celite pad and concentration of the filtrates, purification by flash chromatography (EtOAc–hexanes, 2%) afforded (S)-desoxyfugomycin 2 (37.7 mg, 88%) as a pale-yellow oil. Rf = 0.36 (EtOAc–hexanes, 20%); [α]D 22 +14.4 (c 0.86, CHCl3) {Lit.4a [α]D 20 +14.0 (c 0.46, CHCl3)}; ee > 97% [HPLC: ChiralCel AD-H; n-hexane–i-PrOH, 98:2; 0.4 mL/min; t R = 21.1 (major), 22.5 (minor) min]. 1H NMR (400 MHz, CDCl3): δ = 7.16 (s, 1 H), 6.06 (dm, J = 11.5, 1 Hz, 1 H), 5.94 (dt, J = 11.5, 7.0 Hz, 1 H), 5.11 (br q, J = 7.0 Hz, 1 H), 2.25 (qd, J = 7.0, 1.5 Hz, 2 H), 1.48–1.33 (m, 4 H), 1.46 (d, J = 7.0 Hz, 3 H), 0.91 (t, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.5, 149.0, 140.2, 128.8, 116.7, 77.8, 31.5, 29.7, 22.6, 19.5, 14.1. HRMS (ESI): m/z [M + H]+ calcd for C11H17O2: 181.1229; found: 181.1215.
  • 29 Data for (S)-10: [α]D 22 –60.0 (c 0.99, CHCl3); ee > 98% [HPLC: ChiralCel OD-H; n-hexane–i-PrOH, 90:10; 0.5 mL/min; t R = 10.4 (major), 11.2 (minor) min]. 1H NMR (400 MHz, CDCl3): δ = 7.53 (d, J = 2.0 Hz, 1 H), 5.00 (m, 1 H), 3.93 (dd, J = 10.9, 4.3 Hz, 1 H), 3.84 (dd, J = 10.9, 5.0 Hz, 1 H), 0.87 (s, 9 H), 0.06 (s, 3 H), 0.05 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 168.4, 150.8, 114.0, 82.8, 62.7, 25.8, 18.3, –5.38, –5.41. HRMS (ESI): m/z [M + H]+ calcd for C11H20BrO3Si: 307.0365; found: 307.0353.
  • 30 Data for (S)-11: [α]D 22 –14.1 (c 1.06, CHCl3); ee > 97% [HPLC: ChiralCel AD-H; n-hexane–i-PrOH, 98:2; 0.4 mL/min; t R = 16.5 (major), 18.3 (minor) min]. 1H NMR (400 MHz, CDCl3): δ = 7.37 (d, J = 1.6 Hz, 1 H), 5.02 (m, 1 H), 3.90 (dd, J = 10.7, 4.6 Hz, 1 H), 3.77 (dd, J = 10.7, 5.4 Hz, 1 H), 2.41 (t, J = 7.2 Hz, 2 H), 1.56–1.43 (m, 4 H), 0.92 (t, J = 7.4 Hz, 3 H), 0.87 (s, 9 H), 0.06 (s, 3 H), 0.05 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.7, 151.9, 119.6, 98.9, 81.7, 70.1, 63.3, 30.4, 25.9, 22.1, 19.4, 18.3, 13.7, –5.4 (2 C) –5.34, –5.37. HRMS (ESI): m/z [M + H]+ calcd for C17H29O3Si: 309.1886; found: 309.1891.
  • 31 Synthesis of (S)-(+)-Fugomycin 1: To a solution of (S)-11 (28.2 mg, 0.091 mmol) in EtOAc–MeOH (9:1, 0.9 mL) was added 5% Pd/BaSO4 (9 mg), followed by a solution of pyridine in EtOAc–MeOH (9:1, 0.67 mL, 0.011 mmol, 0.12 equiv). The vessel was flashed with hydrogen gas and the mixture was shaken under hydrogen (1 atm) for 1 h at r.t., after which time, a mixture consisting of TBS-protected fugomycin (93%), starting material (3%), and the corresponding n-hexylbutenolide (4%) was obtained. Purification by chromatography over silica gel containing 10% silver nitrate (n-hexane–CH2Cl2, 10:3) afforded essentially pure TBS-protected fugomycin (25.7 mg) as a colorless oil. The oil was dissolved in MeOH (1 mL) and Dowex 50WX8 (H+ form, 50 mg) was added. After stirring at r.t. for 26 h, the mixture was filtered and concentrated in vacuo. Purification of the residue by flash chromatography (n-hexane–MeOH, 200:3) provided (S)-fugomycin 1 as a white solid. Mp 48–50 °C (Lit.4a colorless oil); [α]D 22 +19.7 (c 0.45, CHCl3); ee > 97% [HPLC: ChiralCel AD-H; n-hexane–i-PrOH, 90:10; 0.4 mL/min; t R = 14.6 (major), 13.3 (minor) min]. 1H NMR (400 MHz, CDCl3): δ = 7.16 (br s, 1 H), 6.09 (br d, J = ca. 12 Hz, 1 H), 5.96 (dt, J = 11.5, 7.0 Hz, 1 H), 5.12 (br s, 1 H), 4.00 (br dd, J = 12.2, 3.8 Hz, 1 H), 3.77 (dd, J = 12.2, 5.4 Hz, 1 H), 2.26 (m, 2 H), 1.51–1.30 (m, 4 H), 0.92 (t, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.1, 144.2, 140.8, 130.5, 116.5, 82.0, 63.4, 31.4, 29.8, 22.6, 14.1. Anal. Calcd for C11H16O3: C, 67.32; H, 8.22. Found: C, 67.37; H, 8.23.