Aluminum Trifluoromethanesulfonate

Compiled by Maretha du Plessis
Maretha du Plessis was born in Wellington, South Africa, in 1988. She received her B.Sc. in 2009, her honours degree in 2010, and earlier in 2013 her M.Sc. in organic chemistry, all with distinction, from the University of the Free State. She is currently working towards her Ph.D. under the supervision of Professor B. C. B. Bezuidenhoudt at the University of the Free State.
Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
E-mail: 2006034538@ufs4life.ac.za

SYNLETT 2013, 24, 2329–2330
Advanced online publication: 05.09.2013
DOI: 10.1055/s-0033-1339855; Art ID: ST-2013-V0457-V
© Georg Thieme Verlag Stuttgart · New York
(F) Gohain et al.17 reported a ‘green’ Friedel–Crafts, Michael-type addition of indole to α,β-unsaturated ketones catalyzed by Al(OTf)$(_3$) in the recyclable solvent polyethylene glycol.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure.png}
\caption{Reaction Scheme}
\end{figure}

(G) Parvanak-Boroujeni and co-workers utilized polystyrene-supported aluminum triflate in the acylation of a range of aromatic substrates with benzoic acid and were able to obtain the corresponding benzophenones in excellent yields.18

(H) Williams and co-workers discovered that aluminum triflate could be used as a highly active non-protic co-catalyst for the palladium-catalysed methoxycarbonylation of alkenes.4 High conversions (up to 98%) were obtained for the methoxycarbonylation of styrene with \(\frac{b}{l} \) ratios of up to 3:1. One of the main advantages of the Lewis acid co-catalyst is that it does not lead to phosphonium salt formation and depletion of the ligand, resulting in palladium ‘fall-out’ during these reactions.

(I) During the author’s M.Sc project, the utilization of Al(OTf)$(_3$) as co-catalyst in alkoxycarbonylation was extended to include alkyl-substituted styrene substrates. In this regard, PdCl$_2$ was found to be more reactive than Pd(OAc)$_2$, and trans-β-methylstyrene could be transformed into its respective methyl and ethyl esters with up to 95% conversion, with the major products being linear in this instance.19

(J) The Williams group11 found that the alkoxycarbonylation reaction could be extended to include alkynes when a bidentate ligand is utilized in the process. High conversions (100%) with very high \(\frac{b}{l} \) ratios (99:1) were obtained.

References