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Introduction
The synthesis of aluminum trifluoromethanesulfonate
from aluminum trichloride and triflic acid was published
by Olah et al.1,2 in 1988. Aluminum triflate is a white solid
with a high melting point2 and acts as a strong, stable,
oxophilic3–5 Lewis acid that can easily be recycled and
reused6 due to its water-tolerant properties.7 During initial
investigations, aluminum trifluoromethanesulfonate was
mainly used for Michael and Friedel–Crafts reactions, and

it also functioned as a Lewis acid catalyst for the protec-
tion of alcohols, phenols, and thiophenols8 with a variety
of different protecting groups (i.e., methyl, ethyl, isopro-
pyl, tert-butyl, acetyl, tetrahydropyranyl and tetrahydro-
furanyl).1,9,10 Recently, the utilization of aluminum
trifluoromethanesulfonate has been studied in much more
diversity, for example as a co-catalyst in metal-catalyzed
reactions,4,11 in the nucleophilic opening of epoxides,5,12,13

cyclization,14 substitution,15 and other reactions.

Abstracts

(A) Williams et al.12 obtained excellent results (92–98% yield) in the
ring opening of epoxides like styrene oxide with alcohols (ROH,
R = C1–C4) and aluminum triflate to produce the monoethers of
phenyl-substituted glycols. The ring opening of cyclohexene oxide
also gave 83–89% yield utilizing only 0.002 mol% of triflate.

(B) Fringuelli et al.5 and Williams et al.13 extended the Al(OTf)3-
catalysed ring opening of epoxides to include the use of amines in-
stead of alcohols and were able to isolate the aminoalcohols in good
yield (75–90%). The opening of cyclohexene oxide with 2-picolyl-
amine could be effected with Al(OTf)3 at concentrations of 5 mol%
leading to the product being obtained in 99% yield under solvent-
free conditions.

(C) Chaminade et al.14 published the preparation of 1,2-oxaza het-
erocycles from unsaturated oximes through treatment of the sub-
strate with different Lewis acid catalyst–solvent combinations. It
was found that Al(OTf)3 in nitromethane (MeNO2) gave the best re-
sult for this transformation.

(D) Since naturally occurring 1-amino acids display a variety of bio-
logical activities and also act as plant-growth regulators and herbi-
cides, Sobhani et al.16 studied the synthesis of 1-amino-
phosphonates and found that Al(OTf)3 could be applied as a catalyst
in a one-pot synthesis of primary diethyl 1-aminophosphonates un-
der solvent-free conditions.

(E) Gohain et al.15 showed Al(OTf)3 to be a highly efficient and rel-
atively inexpensive catalyst for the direct nucleophilic substitution
of propargylic alcohols forming carbon–carbon and carbon–hetero-
atom bonds.
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14a 92% yield
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14c 90% yield
14d 92% yield
14e 85% yield
14f 90% yield
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(F) Gohain et al.17 reported a ‘green’ Friedel–Crafts, Michael-type
addition of indole to α,β-unsaturated ketones catalyzed by Al(OTf)3
in the recyclable solvent polyethylene glycol.

(G) Parvanak-Boroujeni and co-workers utilized polystyrene-
supported aluminum triflate in the acylation of a range of aromatic
substrates with benzoic acid and were able to obtain the correspond-
ing benzophenones in excellent yields.18

(H) Williams and co-workers discovered that aluminum triflate
could be used as a highly active non-protic co-catalyst for the palla-
dium-catalysed methoxycarbonylation of alkenes.4 High conver-
sions of up to 98% were obtained for the methoxycarbonylation of
styrene with l/b ratios of up to 3:1. One of the main advantages of the
Lewis acid co-catalyst is that it does not lead to phosphonium salt
formation and depletion of the ligand, resulting in palladium ‘fall-
out’ during these reactions.

(I) During the author’s M.Sc. project, the utilization of Al(OTf)3 as
co-catalyst in alkoxycarbonylation was extended to include alkyl-
substituted styrene substrates. In this regard, PdCl2 was found to be
more reactive than Pd(OAc)2, and trans-β-methylstyrene could be
transformed into its respective methyl and ethyl esters with up to
95% conversion, with the major products being linear in this in-
stance.19

(J) The Williams group11 found that the alkoxycarbonylation reac-
tion could be extended to include alkynes when a bidentate ligand is
utilized in the process. High conversions (100%) with very high b/l
ratios (99:1) were obtained.
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