Synlett 2013; 24(16): 2119-2123
DOI: 10.1055/s-0033-1339491
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine(III)-Promoted Synthesis of Oxazoles through Oxidative Cyclization of N-Styrylbenzamides

Christian Hempel
Institut für Organische Chemie, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076 Tübingen, Germany   Fax: +49(7071)295897   Email: boris.nachtsheim@uni-tuebingen.de
,
Boris J. Nachtsheim*
Institut für Organische Chemie, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076 Tübingen, Germany   Fax: +49(7071)295897   Email: boris.nachtsheim@uni-tuebingen.de
› Author Affiliations
Further Information

Publication History

Received: 14 June 2013

Accepted after revision: 09 July 2013

Publication Date:
14 August 2013 (online)


Abstract

The hypervalent iodine reagent PhI(OTf)2, generated in situ, has been successfully utilized in an intramolecular oxidative cyclization of N-styrylbenzamides. In remarkably short reaction times, the desired 2,5-disubstituted oxazoles were isolated in high yields in this metal-free oxidative C–O bond-forming reaction.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 1b Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 1c Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 1d Zhdankin VV. ARKIVOC 2009; (i): 1
    • 1e Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 1f Brown M, Farid U, Wirth T. Synlett 2013; 24: 424

      For selected reviews, see:
    • 2a Quideau S, Pouységu L, Deffieux D. Synlett 2008; 67
    • 2b Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 2c Silva LF. Jr, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
    • 3a Stenmark SL, Pierson DL, Jensen RA, Glover GI. Nature 1974; 247: 290
    • 3b Fazel AM, Bowen JR, Jensen RA. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1270
  • 4 Hempel C, Weckenmann NM, Maichle-Moessmer C, Nachtsheim BJ. Org. Biomol. Chem. 2012; 10: 9325
  • 5 For a general procedure for the preparation of enamides 3, see the Supporting Information.

    • See, for example:
    • 6a Hirt UH, Spingler B, Wirth T. J. Org. Chem. 1998; 63: 7674
    • 6b Li J, Chan PW. H, Che C.-M. Org. Lett. 2005; 7: 5801
    • 6c Cochran BM, Michael FE. Org. Lett. 2008; 10: 5039
    • 6d Moriarty RM, Tyagi S. Org. Lett. 2009; 12: 364
    • 6e Wardrop DJ, Bowen EG, Forslund RE, Sussman AD, Weerasekera SL. J. Am. Chem. Soc. 2009; 132: 1188
    • 6f Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
    • 6g Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
    • 6h Fujita M, Wakita M, Sugimura T. Chem. Commun. 2011; 47: 3983
    • 6i Kang Y.-B, Gade LH. J. Am. Chem. Soc. 2011; 133: 3658
    • 6j Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
    • 6k Zhong W, Yang J, Meng X, Li Z. J. Org. Chem. 2011; 76: 9997
    • 6l Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
    • 6m Kim HJ, Cho SH, Chang S. Org. Lett. 2012; 14: 1424
    • 6n Souto JA, Martínez C, Velilla I, Muñiz K. Angew. Chem. Int. Ed. 2013; 52: 1324
    • 6o Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
    • 6p Bekkaye M, Su Y, Masson G. Eur. J. Org. Chem. 2013; 3978

      For examples see:
    • 7a Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
    • 7b Wasserman HH, McCarthy KE, Prowse KS. Chem. Rev. 1986; 86: 845
    • 7c Searle PA, Molinski TF. J. Am. Chem. Soc. 1995; 117: 8126
    • 7d Wipf P. Chem. Rev. 1995; 95: 2115
    • 7e Dalisay DS, Rogers EW, Edison AS, Molinski TF. J. Nat. Prod. 2009; 72: 732
    • 7f Desroy N, Moreau F, Briet S, Le Fralliec G, Floquet S, Durant L, Vongsouthi V, Gerusz V, Denis A, Escaich S. Bioorg. Med. Chem. 2009; 17: 1276
    • 7g Jin Z. Nat. Prod. Rep. 2011; 28: 1143

      For selected examples, see:
    • 8a Wipf P, Miller CP. J. Org. Chem. 1993; 58: 3604
    • 8b Coqueron P.-Y, Didier C, Ciufolini MA. Angew. Chem. Int. Ed. 2003; 42: 1411
    • 8c Cano I, Álvarez E, Nicasio MC, Pérez PJ. J. Am. Chem. Soc. 2010; 133: 191
    • 8d Jiang H, Huang H, Cao H, Qi C. Org. Lett. 2010; 12: 5561
    • 8e Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
    • 8f Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
    • 8g Weyrauch JP, Hashmi AS, Schuster A, Hengst T, Schetter S, Littmann A, Rudolph M, Hamzic M, Visus J, Rominger F, Frey W, Bats JW. Chem. Eur. J. 2010; 16: 956
    • 8h Wu J, Chen W, Hu M, Zou H, Yu Y. Org. Lett. 2010; 12: 616
    • 8i Zeng X, Ye K, Lu M, Chua PJ, Tan B, Zhong G. Org. Lett. 2010; 12: 2414
    • 8j Davies PW, Cremonesi A, Dumitrescu L. Angew. Chem. Int. Ed. 2011; 50: 8931
    • 8k He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 8l Ritson DJ, Spiteri C, Moses JE. J. Org. Chem. 2011; 76: 3519
    • 8m Bartoli G, Cimarelli C, Cipolletti R, Diomedi S, Giovannini R, Mari M, Marsili L, Marcantoni E. Eur. J. Org. Chem. 2012; 630
    • 8n Xie J, Jiang H, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979

      For recent examples, see:
    • 9a Das J, Reid JA, Kronenthal DR, Singh J, Pansegrau PD, Mueller RH. Tetrahedron Lett. 1992; 33: 7835
    • 9b Schuh K, Glorius F. Synthesis 2007; 2297
    • 9c Martín R, Cuenca A, Buchwald SL. Org. Lett. 2007; 9: 5521
    • 9d Lechel T, Lentz D, Reissig H.-U. Chem. Eur. J. 2009; 15: 5432
    • 9e Ferreira PM. T, Castanheira EM. S, Monteiro LS, Pereira G, Vilaça H. Tetrahedron 2010; 66: 8672
    • 9f Misra NC, Ila H. J. Org. Chem. 2010; 75: 5195
    • 9g Lechel T, Gerhard M, Trawny D, Brusilowskij B, Schefzig L, Zimmer R, Rabe JP, Lentz D, Schalley CA, Reissig H.-U. Chem. Eur. J. 2011; 17: 7480
    • 10a Cheung CW, Buchwald SL. J. Org. Chem. 2012; 77: 7526
    • 10b Wendlandt AE, Stahl SS. Org. Biomol. Chem. 2012; 10: 3866
  • 11 Saito A, Matsumoto A, Hanzawa Y. Tetrahedron Lett. 2010; 51: 2247
  • 12 Zheng Y, Li X, Ren C, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2012; 77: 10353
  • 13 Moon NG, Harned AM. Tetrahedron Lett. 2013; 54: 2960
    • 14a Pell TP, Couchman SA, Ibrahim S, Wilson DJ. D, Smith BJ, Barnard PJ, Dutton JL. Inorg. Chem. 2012; 51: 13034
    • 14b Lutz KE, Thomson RJ. Angew. Chem. Int. Ed. 2011; 50: 4437
    • 14c Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
  • 15 Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
  • 16 Synthesis of Oxazoles 4a–m; General Procedure: The appropriate N-styrylbenzamide (3am; 0.015 mmol, 1.0 equiv) was suspended in a 1:1 mixture of anhydrous CH2Cl2 and Et2O (3 mL) and cooled to –78 °C. PIFA (1.2 equiv) and TMSOTf (2.2 equiv) were added and the reaction mixture was stirred at 0 °C until full conversion of the starting material was observed by TLC monitoring. The reaction mixture was diluted with CH2Cl2 (3 mL), washed with NaHCO3 (1 M, 3 mL) and the aqueous phase was extracted with CH2Cl2 (3 × 3 mL). The combined organic layers were dried over Na2SO4 and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (cyclohexane–EtOAc). Compound 4l: Mp 130–132 °C. 1H NMR (400 MHz, CDCl3): δ = 8.54 (s, 2 H), 7.95 (s, 1 H), 7.78–7.75 (m, 2 H), 7.52–7.47 (m, 3 H), 7.43–7.38 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 158.4, 152.9, 132.7 (q, J = 34.0 Hz), 129.5, 129.4, 129.3, 127.4, 126.3, 124.7, 124.1, 123.6-123.4 (m), 123.1 (q, J = 271 Hz). MS (FAB): m/z = 358.1 [M+H]+. IR: 1736, 1380, 1277, 1130, 943, 901, 843, 767, 730, 681 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C17H9F6NO: 358.06611; found: 358.06579.