Synlett 2013; 24(14): 1805-1808
DOI: 10.1055/s-0033-1339375
letter
© Georg Thieme Verlag Stuttgart · New York

An Approach to the Synthesis of Tetrahydroisoquinoline Alkaloids by Alkene Hydroamination: Synthesis of Coralydine

Annie Pouilhès
Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR CNRS n°8182), Bâtiment 410, Université de Paris-Sud, 91405 Orsay, France   Fax: +33(1)69154679   Email: cyrille.kouklovsky@u-psud.fr
,
Jean-Pierre Baltaze
Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR CNRS n°8182), Bâtiment 410, Université de Paris-Sud, 91405 Orsay, France   Fax: +33(1)69154679   Email: cyrille.kouklovsky@u-psud.fr
,
Cyrille Kouklovsky*
Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR CNRS n°8182), Bâtiment 410, Université de Paris-Sud, 91405 Orsay, France   Fax: +33(1)69154679   Email: cyrille.kouklovsky@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 11 June 2013

Accepted after revision: 15 June 2013

Publication Date:
01 August 2013 (online)


Dedicated to the memory of Professor Jean-Louis Namy

Abstract

The protoberberine alkaloid coralydine was synthesized in a short sequence by a strategy including an intramolecular alkene hydroamination as the key step, followed by a Pictet–Spengler ­cyclization.

Supporting Information

 
  • References and Notes

  • 1 Bentley KW. Nat. Prod. Rep. 2006; 23: 444
  • 2 Da-Cunha EV. L, Fechine IM, Guedes DN, Barbosa-Filho JM, Da Silva MS. Alkaloids Chem. Biol. 2005; 62: 1

    • For isolation and structure determination, see:
    • 3a Bruderer H, Metzeger J, Brossi A, Daly JJ. Helv. Chim. Acta 1976; 59: 2793
    • 3b Lu S.-T, Su T.-L, Kametani T, Ujiie A, Ihara M, Kukumoto K. Heterocycles 1975; 3: 459
  • 4 Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341

    • For recent reviews, see:
    • 5a Majumdar KC, Debnath P, De N, Roy B. Curr. Org. Chem. 2011; 15: 1760
    • 5b Chemler SR. Org. Biomol. Chem. 2009; 7: 3009
    • 5c Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 5d Aillaud I, Collin J, Hannedouche J, Schulz E. Dalton Trans. 2007; 5105
    • 5e See also: Smith AR, Lovick HM, Livinghouse T. Tetrahedron Lett. 2012; 53: 6358 ; and references cited therein
    • 6a Deschamp J, Collin J, Hannedouche J, Schulz E. Eur. J. Org. Chem. 2011; 3329
    • 6b Martinez PH, Hultzsch KC, Hampel F. Chem. Commun. 2006; 2221
  • 7 Hesp KD, Stradiotto M. ChemCatChem 2010; 2: 1192
  • 8 Zi G. Dalton Trans. 2009; 9191
    • 9a Henderson L, Knight DW, Williams AC. Tetrahedron Lett. 2012; 53: 4657
    • 9b Tsuchida S, Kanegishe A, Ogata T, Baba H, Yamamoto Y, Tomioka K. Org. Lett. 2008; 10: 3635
    • 9c Otterlo WA. L, Pathak R, Koning CB, Fernandes MA. Tetrahedron Lett. 2004; 45: 9561
  • 10 Ogata T, Kimachi T, Yamada K.-I, Yamamoto Y, Tomioka K. Heterocycles 2012; 86: 469
  • 11 Queffelec C, Boeda F, Pouilhès A, Meddour A, Kouklovsky C, Hannedouche J, Collin J, Schulz E. ChemCatChem 2011; 3: 122

    • For the synthesis of coralydine, see:
    • 12a Chaumontet M, Piccardi R, Baudoin O. Angew. Chem. Int. Ed. 2009; 48: 179
    • 12b Szawkalo J, Czarnocki Z. Monatsh. Chem. 2005; 136: 1619
    • 12c Orito K, Miyazawa M, Kanbayashi R, Tatsuzawa T, Tokuda M, Suginome H. J. Org. Chem. 2000; 65: 7495
    • 12d Sotomayor N, Dominguez E, Lete E. J. Org. Chem. 1996; 61: 4062
    • 12e Czarnocki Z, McLean DB, Szarek WA. Bull. Soc. Chim. Belg. 1986; 95: 749
  • 13 The use of other chiral bisoxazoline ligands gave similar results.
  • 14 Synthesis of Coralydine (2) and O-Methylcorytenchirine (3): To a solution of compound 13 (52 mg, 0.15 mmol) in toluene (3 mL) were added at r.t. 4 Å molecular sieves (200 mg) and orthophosphoric acid (50 mg). The solution was stirred for 5 min at r.t. and 1,1-dimethoxyethane was added (0.2 mL). After 4 h at 70 °C, the solution was cooled, filtered and evaporated to dryness. The residue was dissolved in CH2Cl2 (20 mL) and neutralized with an aq 10% Na2CO3 solution (20 mL). The organic layer was dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by chromatography (20% EtOAc–Et2O) to give 2 (17 mg) and 3 (17 mg) as colorless oils that solidify on standing (combined yield: 61%). Data for coralydine (2; natural product numbering): Rf 0.55 (20% EtOAc–Et2O). 1H NMR (400 MHz, CDCl3): δ = 1.51 (d, J= 6.3 Hz, 3 H, C19-H), 2.40–2.46 (m, 1 H, C6-Ha), 2.66–2.70 (m, 1 H, C5-Ha), 2.84 (m, 1 H, C13-Hb), 3.09 (dd, J 1,13a= 16 Hz, J 13a,13b= 2.5 Hz, 1 H, C13-Ha), 3.11 (m, 1 H, C5-Hb), 3.35 (m, 1 H, C6-Hb), 3.66–3.69 (m, 2 H, C8-H, C18-H), 3.83 (s, 3 H, OMe), 3.84 (s, 6 H, 2 × OMe), 3.85 (s, 3 H, OMe), 6.60 (s, 1 H, C4-H), 6.63 (s, 1 H, C12-H), 6.66 (s, 1 H, C9-H), 6.73 (s, 1 H, C1-H). 13C NMR (100 MHz, CDCl3): δ = 22.2 (C19), 29.9 (C5), 36.8 (C13), 47.3 (C6), 56.0 (OMe), 56.3 (OMe), 59.2, 59.5 (C8, C18), 109.1 (C1), 109.8 (C9), 111.3, 111.5 (C4, C12), 127.0, 127.2 (C15, C20), 130.7 (C14), 131.6 (C21), 147.6, 147.7 (C2, C3, C10, C11). HRMS (ESI+): m/z [M + H]+ calcd for [C22H28NO4 +]: 370.2013; found: 370.2016. Data for O-methylcorytenchirine (3): see Supporting Information.