This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research.

Introduction

trans-1,2-Diaminocyclohexane (1), denoted as *trans*-DACH, is a chiral molecule with C₂ symmetry. It was synthesized for the first time in 1926 from hexahydrophthalic acid by Wieland.¹ A convenient way for the resolution of the enantiomers was introduced by Whitney in 1980.² An aqueous solution of racemic *trans*-DACH and enantiomerically pure L-(–)-tartaric acid was treated with glacial acetic acid and the resulting white precipitate of enantiomerically pure (1R,2R)-diaminocyclohexane tartarate was subsequently treated with an aqueous solution of KOH yielding 1 (Scheme 1). Recently, it was demonstrated that the second enantiomer can be recovered from the resulting filtrate with another portion of L-(–)-tartaric acid.³

Abstracts

(A) I has been confirmed as a cheap and good organocatalyst for enantioselective aldol reactions. Various organic acids were tested as co-catalysts. The model reaction of 4-nitrobenzaldehyde with cyclohexanone, which was studied by Liu and co-workers,⁵ proceeds with good yield (75%) and enantioselectivity (93% ee).

(B) I can be used as a cheap and simple chiral ligand for N-arylation, the reaction of an aryl halide with amines. This reaction was applied in the synthesis of possible novel corticotropin-releasing factor antagonists.⁶ By analogy, I can catalyze S-arylations in which thioethers are formed.⁷

(C) As reported by the group of Ge,⁸ I works as an organocatalyst in the asymmetric vinylogous Michael addition. This reaction proceeds through a bis-iminium intermediate and is highly diastereo- and enantioselective.

In the early 1990s, Jacobsen and co-workers published two subsequent papers on the enantioselective oxidation of olefins catalyzed by an imine complex derived from (1R,2R)-diaminocyclohexane.⁴ Since then, the interest in DACH-based compounds in chiral synthesis has been growing. Although many derivatives of the compound have been applied in chiral catalysis, recent years brought catalytic and synthetic applications of *trans*-DACH itself.
(D) Apart from having catalytic properties, 1 is a skeleton for many high symmetry chiral molecules. One of the most spectacular examples is a spherand prepared by thermodynamically driven [4+6] cyclocondensation of 1 and benzene-1,3,5-tricarboxaldehyde.9

(E) Similarly, [3+3] cyclocondensation of 1 and 2,6-diformyl-4-methylphenol yields a macroyclic triglimine.10 Crystallization of the enantiomerically pure compound gives a yellow solid with photochromic properties. Noteworthy, racemic crystals do not show the same behavior. This class of macrocycles has been used in a highly enantioselective fluorescent recognition of mandelic acid derivatives.11

(F) 1 has been applied in the synthesis of tetracyclic amines by condensation with ammonia and paraformaldehyde under mild conditions.12

(G) Interesting DACH-derived chiral bisimidazole N-oxides have recently been reported.13 They were prepared in a multistep reaction starting from oximes. The compounds were tested as organocatalysts in the enantioselective allylation of aromatic aldehydes.

(H) By addition of the mono-tosylated intermediate to 1-based thiocyanate, a chiral thiocyanate derivative was synthesized. The product was subsequently applied as a catalyst for the asymmetric synthesis of biologically active 4-aminochromanes.14

(I) Beyond synthetic chemistry, the tartrate of 1 was used as a main ingredient of a novel multicomponent (organo)gelator solution (MGS). Concentrations of the MGS as low as 0.06 M allowed for the preparation of gels from various solvents with moderate polarity. The gelation relies on an ionic dissociation–exchange process.15

References and Notes