Synlett 2013; 24(13): 1667-1670
DOI: 10.1055/s-0033-1339296
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Facile Synthesis of Iminoquinazolinedione Derivatives by Solid-State Diels–Alder Reaction under Catalyst-Free Conditions

Manas M. Sarmah
a   Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat – 785006, Assam, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
,
Debajyoti Bhuyan
a   Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat – 785006, Assam, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
b   Department of Chemistry, Dergaon Kamal Dowerah College, Dergaon – 785614, Assam, India
,
Dipak Prajapati*
a   Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat – 785006, Assam, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
› Author Affiliations
Further Information

Publication History

Received: 26 April 2013

Accepted after revision: 29 May 2013

Publication Date:
15 July 2013 (online)


Abstract

A solvent- and catalyst-free Diels–Alder reaction with 6-(2-morpholinovinyl)-1,3-dimethyluracil, cinnamaldehyde, and an amine has been developed for the construction of iminoquinazoline-2,4-dione derivatives within a short reaction time. The method is clean, simple, and operation friendly.

Supporting Information

 
  • References and Notes

  • 1 Addadi L, Mil JV, Lahav M. J. Am. Chem. Soc. 1982; 104: 3422
  • 2 Mil JV, Addadi L, Gati E, Lahav M. J. Am. Chem. Soc. 1982; 104: 3429
  • 3 Cohen MD. Tetrahedron 1987; 43: 1211
  • 4 Zimmerman HE, Zuraw MJ. J. Am. Chem. Soc. 1989; 111: 7974
    • 5a Chung CM, Hasegawa M. J. Am. Chem. Soc. 1991; 113: 7311
    • 5b Tanaka K, Toda F, Mochizaki E, Yasui N, Kai Y, Miyahara I, Hirotsu K. Angew. Chem. Int. Ed. 1999; 38: 3523
  • 6 McCullough JD. Jr, Curtin DY, Paul IC. J. Am. Chem. Soc. 1972; 94: 874
    • 7a Costantino U, Fringuelli F, Orru M, Nocchetti M, Piermatti O, Pizzo F. Eur. J. Org. Chem. 2009; 1214
    • 7b Leca D, Gaggini F, Cassayre J, Loiseleur O. J. Org. Chem. 2007; 72: 4284
    • 8a Kim JH, Hubig SM, Lindeman SV, Kochi JK. J. Am. Chem. Soc. 2001; 123: 87
    • 8b Kim JH, Lindeman SV, Kochi JK. J. Am. Chem. Soc. 2001; 123: 4951
  • 9 Biradha K, Santra R. Chem. Soc. Rev. 2013; 42: 950
  • 10 Sarma R, Borah KJ, Dommaraju Y, Prajapati D. Mol. Diversity 2011; 15: 697
    • 11a Kim JN, Ryu EK. J. Org. Chem. 1992; 57: 1088
    • 11b Saladino R, Stasi L, Crestini C, Nicoletti R, Botta M. Tetrahedron 1997; 53: 7045
    • 11c Prajapati D, Baruah PP, Gogoi BJ, Sandhu JS. Beilstein J. Org. Chem. 2006; 2: 5
    • 12a Choo H-YP, Kim M, Lee SK, Kim SW, Chung IK. Bioorg. Med. Chem. 2002; 10: 517
    • 12b Wagner G, Wunderlich I. Pharmazie 1978; 33: 15
    • 12c Ibrahim SS, Abdel-Halim AM, Gabr Y, El-Edfawy S, Abdel-Rahman R. J. Chem. Res., Synop. 1997; 154
    • 12d Hori M, Iemura R, Hara H, Ozaki A, Sukamoto T, Ohtaka H. Chem. Pharm. Bull. 1990; 38: 1286
  • 13 Tkachenko YN, Tsupak EB, Pozharskii AF. Chem. Heterocycl. Compd. 2000; 36: 307
    • 14a Sarma R, Sarmah MM, Prajapati D. J. Org. Chem. 2012; 77: 2018
    • 14b Sarmah MM, Sarma R, Prajapati D, Hu W. Tetrahedron Lett. 2013; 54: 267
  • 15 Kagawa N, Sasaki Y, Kojima H, Toyota M. Tetrahedron Lett. 2010; 51: 482
  • 16 General Procedure for the Syntheses of 4a–k A mixture of 6-(2-morpholinovinyl)-1,3-dimethyluracil (1a, 1 mmol), cinnamaldehyde (2, 1 mmol), and p-phenetidine (3a, 1 mmol) was finely ground, and the mixture was heated at 90 °C for 4 h. After the reaction was complete (TLC) the crude product mixture was dissolved in CHCl3 and purified by column chromatography, eluting with hexane–EtOAc (1.5:1) to obtain pure 6-[(4-ethoxyphenylimino)methyl]-1,3-dimethyl-5-phenylquinazoline-2,4-dione (4a). Spectroscopic Data for Selected Compounds Compound 4a: brown solid; mp 188–190 °C. 1H NMR (300 MHz, CDCl3): δ = 8.64–8.61 (d, J = 9.0 Hz, 1 H, CH=CH), 8.01 (s, 1 H, CH=N), 7.39–7.36 (d, J = 9.0 Hz, 1 H, CH=CH), 7.44–6.80 (m, 9 H, Harom), 4.04–4.00 (q, J = 3.6 Hz, 2 H, OCH2), 3.71 (s, 3 H, NCH3), 3.34 (s, 3 H, NCH3), 1.40–1.38 (t, J = 3.54 Hz, 3 H, CH3). 13C NMR (75 MHz, CDCl3): δ = 160.8, 157.7, 155.2, 151.0, 145.9, 144.3, 142.9, 138.2, 132.7, 131.0, 128.4, 128.0, 127.5, 122.3, 116.4, 114.9, 113.8, 113.1 63.6, 31.5, 28.7, 15.0. IR (CHCl3): 2979.1, 2927.2, 1708.1, 1662.8, 1603.0, 1505.3 cm–1. MS (GC–MS): m/z = 413 [M]+. Anal. Calcd for C25H23N3O3: C, 72.62; H, 5.61; N, 10.16; O, 11.61. Found: C, 72.61; H, 5.55; N, 10.07; O, 11.54. Compound 4j: brown solid; mp 166–168 °C. 1H NMR (300 MHz, CDCl3): δ = 9.53 (s, 1 H, CH=N), 8.30–8.28 (d, J = 6.0 Hz, 1 H, CH=CH), 7.42–7.40 (d, J = 6.0 Hz, 1 H, CH=CH), 7.49–7.23 (m, 5 H, Harom), 3.71 (s, 3 H, NCH3), 3.34 (s, 3 H, NCH3), 1.25 [s, 9 H, C(CH3)3]. 13C NMR (75 MHz, CDCl3): δ = 190.4, 160.3, 150.8, 149.2, 145.1, 136.2, 132.8, 130.3, 128.5, 127.9, 114.0, 113.0, 31.7, 29.7, 29.3. IR (CHCl3): 2923.9, 2853.9, 1712.0, 1663.6, 1594.0, 1571.8, 1476.7 cm–1. MS (GC–MS): m/z = 349 [M]+. Anal. Calcd for C21H23N3O2: C, 72.18; H, 6.63; N, 12.03; O, 9.16. Found: C, 72.10; H, 6.61; N, 12.00; O, 9.09.