Synlett 2013; 24(13): 1679-1682
DOI: 10.1055/s-0033-1339276
letter
© Georg Thieme Verlag Stuttgart · New York

Aerobic Oxidation of Sulfides with a Vitamin B2-Derived Organocatalyst

Yasushi Imada*
a   Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan   Fax: +81(6)68506222   Email: naota@chem.es.osaka-u.ac.jp
b   Department of Chemical Science and Technology, Institute of Technology and Science, The University of Tokushima, Minamijosanjima 2-1, Tokushima 770-8506, Japan   Fax: +81(88)6567407   Email: imada@chem.tokushima-u.ac.jp
,
Itoko Tonomura
a   Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan   Fax: +81(6)68506222   Email: naota@chem.es.osaka-u.ac.jp
,
Naruyoshi Komiya
a   Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan   Fax: +81(6)68506222   Email: naota@chem.es.osaka-u.ac.jp
,
Takeshi Naota*
a   Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan   Fax: +81(6)68506222   Email: naota@chem.es.osaka-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29 March 2013

Accepted after revision: 21 May 2013

Publication Date:
28 June 2013 (online)


Abstract

5-Ethyl-3-methyl-2′,4′:3′,5′-di-O-methylenedioxy-riboflavinium perchlorate (DMRFlEt+ClO4 ) is readily derived from commercially available vitamin B2 (riboflavin) and exhibits high catalytic activity for the oxidation of organic sulfides under an oxygen atmosphere (1 atm) with the assistance of hydrazine hydrate as a reductant. This is an inexpensive, convenient, and environmentally benign method for the selective oxidative transformation of sulfides into sulfoxides.

Supporting Information

 
  • References and Notes

    • 1a Anastas PT, Williamson TC. Green Chemistry . Oxford University Press; New York: 1998
    • 1b Sheldon R, Arends IW. C. E, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007
    • 1c Sheldon RA. Chem. Commun. 2008; 3352
    • 3a List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 3b Notz W, List B. J. Am. Chem. Soc. 2000; 122: 7386
    • 3c Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 4a Yang JW, Fonseca MT. H, List B. Angew. Chem. Int. Ed. 2004; 43: 6660
    • 4b Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
    • 4c Martin NJ. A, List B. J. Am. Chem. Soc. 2006; 128: 13368
    • 4d Martin NJ. A, Ozores L, List B. J. Am. Chem. Soc. 2007; 129: 8976
    • 5a Semmelhack MF, Chou CS, Cortes DA. J. Am. Chem. Soc. 1983; 105: 4492
    • 5b Anelli PL, Banfi S, Montanari F, Quici S. J. Org. Chem. 1989; 54: 2970
    • 5c De Mico A, Margarita R, Parlanti L, Vescovi A, Piancatelli G. J. Org. Chem. 1997; 62: 6974
    • 6a Ohkubo K, Fukuzumi S. Org. Lett. 2000; 2: 3647
    • 6b Kotani H, Ohkubo K, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 15999
    • 6c Ohkubo K, Suga K, Fukuzumi S. Chem. Commun. 2006; 2018
    • 6d Xu H.-J, Lin Y.-C, Wan X, Yang C.-Y, Feng Y.-S. Tetrahedron 2010; 66: 8823
    • 7a Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y. J. Org. Chem. 1995; 60: 3934
    • 7b Iwahama T, Sakaguchi S, Ishii Y. Tetrahedron Lett. 1998; 39: 9059
    • 7c Liu R, Liang X, Dong C, Hu X. J. Am. Chem. Soc. 2004; 126: 4112
    • 7d Yang G, Ma Y, Xu J. J. Am. Chem. Soc. 2004; 126: 10542
    • 7e Tong X, Xu J, Miao H. Adv. Synth. Catal. 2005; 347: 1953
    • 7f Karimi B, Biglari A, Clark JH, Budarin V. Angew. Chem. Int. Ed. 2007; 46: 7210
    • 7g Zheng G, Liu C, Wang Q, Wang M, Yang G. Adv. Synth. Catal. 2009; 351: 2638
    • 7h Shibuya M, Osada Y, Sasano Y, Tomizawa M, Iwabüchi Y. J. Am. Chem. Soc. 2011; 133: 6497
    • 8a Palfey BA, Massey V In Comprehensive Biological Catalysis . Vol. 3. Sinnott M. Academic Press; San Diego: 1996: 83-154
    • 8b Ghisla S, Massey V. Eur. J. Biochem. 1989; 181: 1
  • 9 Fitzpatrick PF. Acc. Chem. Res. 2001; 34: 299
    • 10a Ballou DP In Flavins and Flavoproteins . Massey V, Williams CH. Elsevier; New York: 1982: 301-310
    • 10b van Berkel WJ. H, Kamerbeek NM, Fraaije MW. J. Biotechnol. 2006; 124: 670

      For a review on the simulation of flavoenzymes with synthetic flavins, see:
    • 11a Imada Y, Naota T. Chem. Rec. 2007; 7: 354
    • 11b Bäckvall J.-E In Modern Oxidation Methods . Bäckvall J.-E. Wiley-VCH; Weinheim: 2004: 193-222
    • 11c Gelalcha FG. Chem. Rev. 2007; 107: 3338
    • 12a Kemal C, Bruice TC. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 995
    • 12b Kemal C, Chan TW, Bruice TC. J. Am. Chem. Soc. 1977; 99: 7272
    • 13a Fukuzumi S, Kuroda S, Tanaka T. J. Am. Chem. Soc. 1985; 107: 3020
    • 13b Shinkai S, Kameoka K, Ueda K, Manabe O. J. Am. Chem. Soc. 1987; 109: 923
    • 13c Svoboda J, Schmaderer H, König B. Chem. Eur. J. 2008; 14: 1854
    • 13d Schmaderer H, Hilgers P, Lechner R, König B. Adv. Synth. Catal. 2009; 351: 163
    • 14a Hoegy SE, Mariano PS. Tetrahedron 1997; 53: 5027
    • 14b Li W.-S, Zhang N, Sayre LM. Tetrahedron 2001; 57: 4507
    • 15a Yano Y, Yatsu I, Oya E, Ohshima M. Chem. Lett. 1983; 775
    • 15b Yano Y, Ohshima M, Yatsu I, Sutoh S, Vasquez RE, Kitani A, Sasaki K. J. Chem. Soc., Perkin Trans. 2 1985; 753

      Aerobic oxidation:
    • 16a Imada Y, Iida H, Ono S, Murahashi S.-I. J. Am. Chem. Soc. 2003; 125: 2868
    • 16b Imada Y, Iida H, Murahashi S.-I, Naota T. Angew. Chem. Int. Ed. 2005; 44: 1704
    • 16c Imada Y, Iida H, Ono S, Masui Y, Murahashi S.-I. Chem. Asian J. 2006; 1: 136

      Oxidation with H2O2:
    • 17a Murahashi S.-I, Oda T, Masui Y. J. Am. Chem. Soc. 1989; 111: 5002
    • 17b Minidis AB. E, Bäckvall J.-E. Chem. Eur. J. 2001; 7: 297
    • 17c Murahashi S.-I, Ono S, Imada Y. Angew. Chem. Int. Ed. 2002; 41: 2366
    • 17d Lindén AA, Krüger L, Bäckvall J.-E. J. Org. Chem. 2003; 68: 5890
    • 17e Lindén AA, Hermanns N, Ott S, Krüger L, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 112
    • 17f Imada Y, Ohno T, Naota T. Tetrahedron Lett. 2007; 48: 937
    • 17g Baxová L, Cibulka R, Hampl F. J. Mol. Catal. A: Chem. 2007; 277: 53
    • 17h Žurek J, Cibulka R, Dvořáková H, Svoboda J. Tetrahedron Lett. 2010; 51: 1083
    • 17i Marsh BJ, Carbery DR. Tetrahedron Lett. 2010; 51: 2362
    • 17j Mojr V, Buděšínský M, Cibulka R, Kraus T. Org. Biomol. Chem. 2011; 9: 7318
    • 18a Sheldon RA, Kochi JK In Metal-Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
    • 18b Catalytic Oxidations with Hydrogen Peroxide as Oxidant . Strukul G. Kluwer Academic Publishers; Dordrecht: 1992
    • 18c Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329

      For a review, see:
    • 19a Stingl KA, Tsogoeva SB. Tetrahedron: Asymmetry 2010; 21: 1055
    • 19b Fructose-derived ketone: Colonna S, Pironti V, Drabowicz J, Brebion F, Fensterbank L, Malacria M. Eur. J. Org. Chem. 2005; 1727
    • 19c N,N((-Bis[3,5-bis(trifluoromethyl)phenyl]thiourea: Russo A, Lattanzi A. Adv. Synth. Catal. 2009; 351: 521
    • 19d N-Formyl-l-proline: Wei S, Stingl KA, Weiß KM, Tsogoeva SB. Synlett 2010; 707
    • 19e Pyrazinium tetrafluoroborate: Ménová P, Kafka F, Dvořáková H, Gunnoo S, Šanda M, Cibulka R. Adv. Synth. Catal. 2011; 353: 865

    • Phosphoric acids:
    • 19f Liao S, Čorić I, Wang Q, List B. J. Am. Chem. Soc. 2012; 134: 10765
    • 19g Liu Z.-M, Zhao H, Li M.-Q, Lan Y.-B, Yao Q.-B, Tao J.-C, Wang X.-W. Adv. Synth. Catal. 2012; 354: 1012
  • 20 Aerobic Monooxygenation of Sulfides with Catalyst 1; Typical Procedure: A mixture of methyl octyl sulfide (40.1 mg, 0.25 mmol), NH2NH2·H2O (12.5 mg, 0.25 mmol), and 1 16b (6.80 mg, 0.0125 mmol) in CF3CH2OH (0.25 mL) was stirred under an O2 atmosphere at 35 °C for 3 h. The reaction mixture was extracted with CHCl3 and the combined extracts were washed with brine, dried over Na2SO4, and evaporated under reduced pressure to give methyl octyl sulfoxide (41.9 mg, 95%) as a colorless solid.23 Mp 38–39 °C [Lit.24 40.0–40.5 °C]. IR (KBr): 2999, 2953, 2924, 2848, 1675, 1472, 1419, 1300, 1080, 1027, 1001, 952, 722, 696 cm–1. 1H NMR (CDCl3, 500 MHz): δ = 0.88 (t, J = 7.0 Hz, 3 H), 1.22–1.37 (m, 8 H), 1.38–1.53 (m, 2 H), 1.70–1.82 (m, 2 H), 2.56 (s, 3 H), 2.65 (ddd, J = 12.8, 9.1, 7.2 Hz, 1 H), 2.74 (ddd, J = 12.8, 8.8, 6.0 Hz, 1 H). 13C NMR (CDCl3, 125 MHz): δ = 14.1, 22.6, 22.6, 28.9, 29.0, 29.2, 31.7, 52.5. HRMS (EI): m/z [M]+ calcd for C9H20SO: 176.1234; found: 176.1240.
    • 21a Imada Y, Iida H, Naota T. J. Am. Chem. Soc. 2005; 127: 14544
    • 21b Imada Y, Iida H, Kitagawa T, Naota T. Chem. Eur. J. 2011; 17: 5908
  • 22 Imada Y, Takagishi M, Komiya N, Naota T. Synth. Commun. 2013; in press
  • 23 Barber JM, Quek NC. H, Leahy DC, Miller JH, Bellows DS, Northcote PT. J. Nat. Prod. 2011; 74: 809
  • 24 Jerchel D, Dippelhofer L, Renner D. Chem. Ber. 1954; 87: 947