Synlett 2013; 24(12): 1558-1562
DOI: 10.1055/s-0033-1339194
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst- and Metal-Free Rapid Functionalizations of Alkynes Using TsNBr2

Ruchi Chawla
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Atul K. Singh
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 02 May 2013

Accepted after revision: 20 May 2013

Publication Date:
20 June 2013 (online)


Abstract

A very rapid (3–12 min) and efficient method has been developed for a one-pot synthesis of α,α-dibromoalkanones and β-bromoenol alkanoates directly from alkynes using N,N-dibromo-p-toluenesulfonamide (TsNBr2). The protocol is embellished with features like ambient temperature, high regioselectivity, operational simplicity, and metal- and catalyst-free conditions.

 
  • References and Notes


    • For recent selected examples of difunctionalization of terminal alkyne, see:
    • 1a Goossen LJ, Rodriguez N, Goossen K. Angew. Chem. Int. Ed. 2009; 48: 9592
    • 1b Mizuno A, Kusama H, Iwasawa N. Angew. Chem. Int. Ed. 2009; 48: 8318
    • 1c Sha F, Huang X. Angew. Chem. Int. Ed. 2009; 48: 3458
    • 1d Ye L, Cui L, Zhang G, Zhang L. J. Am. Chem. Soc. 2010; 132: 3258
    • 1e Dutta B, Gilboa N, Marek I. J. Am. Chem. Soc. 2010; 132: 5588
    • 1f Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 1g Kuang J, Ma S. J. Am. Chem. Soc. 2010; 132: 1786
    • 2a Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
    • 2b Welch CJ, Albaneze-Walker J, Leonard WR, Biba M, DaSilva J, Henderson D, Laing B, Mathre DJ, Spencer S, Bu X, Wang T. Org. Process Res. Dev. 2005; 9: 198
    • 2c Qiu F, Norwood DL. J. Liq. Chromatogr. Relat. Technol. 2007; 30: 877
  • 3 Palisse A, Kirsch SF. Org. Biomol. Chem. 2012; 10: 8041
    • 4a Ahluwalia VK, Mehta B, Kumar R. Synth. Commun. 1989; 19: 619
    • 4b Prakash R, Kumar A, Aggarwal R, Prakash O, Singh SP. Synth. Commun. 2007; 37: 2501
    • 4c Duggan PJ, Liepa AJ, O’Dea LK, Tranberg CE. Org. Biomol. Chem. 2007; 5: 472

      For selected examples, see:
    • 5a Bruneau C, Dixneuf PH. Chem. Commun. 1997; 507
    • 5b Goossen LJ, Paetzold J. Angew. Chem. Int. Ed. 2004; 43: 1095
    • 5c Zhang D, Ready JM. Org. Lett. 2005; 7: 5681
    • 5d DeBergh JR, Spivey KM, Ready JM. J. Am. Chem. Soc. 2008; 130: 7828
    • 5e Tang W, Liu D, Zhang X. Org. Lett. 2003; 5: 205

      Haloenol acetates are known to be effective precursors of α-keto dianions, see:
    • 6a Kowalski CJ, Haque MS. J. Org. Chem. 1985; 50: 5140
    • 6b Kowalski CJ, O’Dowd ML, Burke MC, Fields KW. J. Am. Chem. Soc. 1980; 102: 5411
    • 6c Kowalski CJ, Haque MS, Fields KW. J. Am. Chem. Soc. 1985; 107: 1429

      For recent selected examples, see:
    • 7a Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 7b Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 7c Amatore C, Jutand A. Acc. Chem. Res. 2000; 33: 314
    • 7d Bettinger HF, Filthaus M. J. Org. Chem. 2007; 72: 9750
    • 7e Uchiyama M, Furuyama T, Kobayashi M, Matsumoto Y, Tanaka K. J. Am. Chem. Soc. 2006; 128: 8404
    • 7f Boukouvalas J, Loach RP. J. Org. Chem. 2008; 73: 8109
  • 8 Kajigaeshi S, Kakinami T, Okamoto T, Fujisaki S. Bull. Chem. Soc. Jpn. 1987; 60: 1159
  • 9 Paul S, Gupta V, Gupta R, Loupy A. Tetrahedron Lett. 2003; 44: 439
  • 10 Ye C, Shreeve JM. J. Org. Chem. 2004; 69: 8561
  • 11 Pandit P, Gayen KS, Khamarui S, Chatterjee N, Maiti DK. Chem. Commun. 2011; 47: 6933
  • 12 Schmidt R, Stolle A, Ondruschka B. Green Chem. 2012; 14: 1673
    • 13a Barluenga J, Rodriguez MA, Campos PJ. J. Org. Chem. 1990; 55: 3104
    • 13b Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C. Org. Lett. 2010; 12: 3262
    • 13c Chen X, Chen D, Lu Z, Kong L, Zhu G. J. Org. Chem. 2011; 76: 6338
  • 14 Kharasch MS, Priestley HN. J. Am. Chem. Soc. 1939; 61: 3425
    • 15a Daniher FA, Butler PE. J. Org. Chem. 1968; 33: 4336
    • 15b Terauchi H, Kowata K, Minematsu T, Takemura S. Chem. Pharm. Bull. 1977; 25: 556
    • 15c Hegedus LS, McKearin JM. J. Am. Chem. Soc. 1982; 104: 2444
    • 15d Li G, Wei H.-X, Kim SH, Neighbors M. Org. Lett. 1999; 1: 395
    • 15e Li G, Wei H.-X, Kim SH. Org. Lett. 2000; 2: 2249
    • 15f Wei H.-X, Kim SH, Li G. Tetrahedron 2001; 57: 3869
    • 15g Wei H.-X, Kim SH, Li G. Tetrahedron 2001; 57: 8407
    • 15h Xu X, Kotti SR. S. S, Liu J, Cannon JF, Headley AD, Li G. Org. Lett. 2004; 6: 4881
    • 16a Phukan P, Chakraborty P, Kataki D. J. Org. Chem. 2006; 71: 7533
    • 16b Saikia I, Phukan P. Tetrahedron Lett. 2009; 50: 5083
    • 16c Saikia I, Chakraborty P, Phukan P. ARKIVOC 2009; (xiii): 281
    • 16d Saikia I, Kashyap B, Phukan P. Synth. Commun. 2010; 40: 2647
    • 16e Saikia I, Kashyap B, Phukan P. Chem. Commun. 2011; 47: 2967
    • 16f Saikia I, Rajbonshi KK, Phukan P. Tetrahedron Lett. 2012; 53: 758
    • 16g Borah AJ, Phukan P. Chem. Commun. 2012; 48: 5491
  • 17 Shen R, Huang X. Org. Lett. 2009; 11: 5698
    • 18a Singh AK, Chawla R, Rai A, Yadav LD. S. Chem. Commun. 2012; 48: 3766
    • 18b Chawla R, Kapoor R, Singh AK, Yadav LD. S. Green Chem. 2012; 14: 1308
    • 18c Singh AK, Yadav LD. S. Synthesis 2012; 44: 591
    • 18d Chawla R, Singh AK, Yadav LD. S. Tetrahedron Lett. 2012; 53: 3382
    • 18e Singh AK, Chawla R, Yadav LD. S. Synthesis 2012; 44: 2353
    • 18f Chawla R, Singh AK, Yadav LD. S. Tetrahedron 2013; 69: 1720
  • 19 Schmid GH, Modro A, Yates K. J. Org. Chem. 1980; 45: 665
  • 20 General Procedure for the Synthesis of α,α-Dibromoalkanones 3 A mixture of alkyne 1 (1.0 mmol) and TsNBr2 (2, 2.0 mmol) in MeCN (2 mL) with H2O (0.2 mL) was stirred at r.t. for 3–10 min (Table 2). After completion of the reaction (monitored by TLC), H2O was added and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phases were dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using a mixture of EtOAc–n-hexane (1:99) as eluent to afford an analytically pure sample of α,α-dibromoalkanones 3 (Table 2). Characterization Data of Representative Compounds Compound 3a: viscous liquid; yield 87%. IR (neat): νmax = 3448, 2926, 1600, 1475, 1092 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.71 (s, 1 H), 7.49–7.57 (m, 2 H), 7.63–7.67 (m, 1 H), 8.08–8.10 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 39.7, 128.9, 129.8, 130.3, 134.7, 185.7. MS (EI): m/z = 276 [M+], 278 [M+ + 2]. Anal. Calcd for C8H6Br2O: C, 34.57; H, 2.18. Found: C, 34.33; H, 2.26. Compound 3h: viscous liquid; yield 78%. IR (neat): νmax = 2960, 2938, 2871, 1720, 1461, 1380, 1243, 1147, 1105, 627 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.99 (m, 6 H), 1.70 (m, 4 H), 2.43 (m, 2 H), 3.09 (t, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.1, 13.6, 18.6, 20.7, 38.3, 46.8, 71.5, 198.0. MS (EI): m/z = 284 [M+], 286 [M+ + 2]. Anal. Calcd for C8H14Br2O: C, 33.60; H, 4.93. Found: C, 33.52; H, 5.02.
  • 21 General Procedure for the Synthesis of Bromoenol Alkanoates 5 and 6 A mixture of alkyne 1 (2.0 mmol) and TsNBr2 (2, 1.0 mmol) in carboxylic acid 4 (2 mL) was stirred at r.t. for 3–12 min (Table 3). After completion of the reaction (monitored by TLC), H2O was added, and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phases were dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude product was purified by preparative chromatography using a mixture of EtOAc–n-hexane (1:99) as eluent to afford an analytically pure sample of bromoenol alkanoates 5 and 6 (Table 3). Characterization Data of Representative Compounds Compound 5a: yellow oil; yield 60%. IR (KBr): νmax = 3095, 2928, 2852, 1765, 1625, 1436, 1370, 1180, 1036, 740, 694, 627, 569, 488 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H), 6.55 (s, 1 H), 7.33–7.35 (m, 3 H), 7.37–7.41 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.5, 96.6, 124.3, 126.1, 128.5, 133.0, 150.2, 166.6. MS (EI): m/z = 240 [M+], 242 [M+ + 2]. Anal. Calcd for C10H9BrO2: C, 49.82; H, 3.76. Found: C, 49.46; H, 3.82. Compound 6a: yellow oil; yield 24%. IR (KBr): νmax = 3096, 2929, 2855, 1762, 1624, 1438, 1370, 1185, 1036, 740, 690, 625, 567, 489 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.17 (s, 3 H), 6.31 (s, 1 H), 7.34–7.43 (m, 4 H), 7.61–7.64 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.3, 94.6, 124.8, 128.5, 129.3, 133.2, 148.7, 167.3. MS (EI): m/z = 240 [M+], 242 [M+ + 2]. Anal. Calcd for C10H9BrO2: C, 49.82; H, 3.76. Found: C, 49.55; H, 3.78. Compound 5d: yellow oil; yield 54%. IR (KBr): νmax = 3094, 2938, 1765, 1609, 1510, 1458, 1370, 1035, 896, 835, 770, 658, 597, 512 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.31 (s, 3 H), 3.76 (s, 3 H), 6.37 (s, 1 H), 6.85 (d, J = 8.8 Hz, 2 H), 7.33 (d, J = 8.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.8, 55.2, 96.4, 113.5, 125.3, 126.3, 150.2, 160.1, 167.3. MS (EI): m/z = 270 [M+], 272 [M+ + 2]. Anal. Calcd for C11H11BrO3: C, 48.73; H, 4.09. Found: C, 48.44; H, 4.12. Compound 6d: yellow oil; yield 20%. IR (KBr): νmax = 3092, 2940, 1763, 1606, 1514, 1457, 1370, 1035, 898, 835, 770, 657, 595, 511 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.13 (s, 3 H), 3.80 (s, 3 H), 6.22 (s, 1 H), 6.87 (d, J = 9.2 Hz, 2 H), 7.56 (d, J = 8.0 Hz, 2 H).13C NMR (100 MHz, CDCl3): δ = 20.5, 55.3, 94.4, 114.1, 125.8, 129.7, 148.5, 160.4, 168.6. MS (EI): m/z = 270 [M+], 272 [M+ + 2]. Anal. Calcd for C11H11BrO3: C, 48.73; H, 4.09. Found: C, 48.40; H, 4.19.