Synlett 2014; 25(12): 1786-1790
DOI: 10.1055/s-0033-1339133
letter
© Georg Thieme Verlag Stuttgart · New York

Monohydrocyanation of Symmetrical Azines Using Potassium Hexacyanoferrate(II) as an Environmentally Friendly Cyanide Source

Xiaochun Hu
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China   Fax: +86(931)7971183   Email: lizheng@nwnu.edu.cn
b   Editorial Department of the University Journal, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China
,
Hongbo Li
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China   Fax: +86(931)7971183   Email: lizheng@nwnu.edu.cn
,
Jingya Yang
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China   Fax: +86(931)7971183   Email: lizheng@nwnu.edu.cn
,
Zheng Li*
a   College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China   Fax: +86(931)7971183   Email: lizheng@nwnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 March 2014

Accepted after revision: 25 April 2014

Publication Date:
28 May 2014 (online)


Abstract

The monohydrocyanation of symmetrical azines to synthesize α-hydrazinonitriles using potassium hexacyanoferrate(II) as cyanide source and benzoyl chloride as a promoter under catalyst-free conditions is described. The advantages of this protocol are the environmentally friendly cyanide source, high yield, and simple work-up procedure.

Supporting Information

 
  • References and Notes

  • 1 Zamfir A, Tsogoeva SB. Org. Lett. 2010; 12: 188
  • 2 Vidal J. Synthesis and Chemistry of α-Hydrazino Acids. In Amino Acids, Peptides and Proteins in Organic Chemistry: Modified Amino Acids, Organocatalysis and Enzymes. Vol. 2. Hughes AB. Wiley-VCH; Weinheim: 2009
  • 3 Popov YV, Mokhov VM, Tankabekyan NA, Safronova OY. Russ. J. Appl. Chem. 2012; 85: 1387
  • 4 Arcari M, Aveta R, Brandt A, Cecchetelli L, Corsi GB, Solinas F. Farmaco 1992; 47: 405
  • 5 Martínez-Muñoz A, Monge D, Martín-Zamora E, Marqués-López E, Álvarez E, Fernández R, Lassaletta JM. Org. Biomol. Chem. 2013; 11: 8247
    • 6a Jacobsen EN, Keith JM. Org. Lett. 2004; 6: 153
    • 6b Manabe K, Oyamada H, Sugita K, Kobayashi S. J. Org. Chem. 1999; 64: 8054
    • 6c Konishi H, Ogawa C, Sugiura M, Kobayashi S. Adv. Synth. Catal. 2005; 347: 1899
  • 7 Okimoto M, Chiba T. J. Org. Chem. 1990; 55: 1070
  • 8 Bailey JR, Pritchett RH. J. Am. Chem. Soc. 1918; 40: 1230
    • 9a Schareina T, Zapf A, Beller M. J. Organomet. Chem. 2004; 689: 4576
    • 9b Weissman SA, Zewge D, Chen C. J. Org. Chem. 2005; 70: 1508
    • 9c Grossman O, Gelman D. Org. Lett. 2006; 8: 1189
    • 9d Cheng YN, Duan Z, Yu LJ, Li ZX, Zhu Y, Wu YJ. Org. Lett. 2008; 10: 901
    • 9e Jia XF, Yang DP, Wang WH, Luo F, Cheng J. J. Org. Chem. 2009; 74: 9470
    • 9f Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 9g Yeung PY, Tsang CP, Kwong FY. Tetrahedron Lett. 2011; 52: 7038
    • 9h Anbarasan P, Neumann H, Beller M. Chem. Eur. J. 2011; 17: 4217
    • 9i Zhang DY, Sun HF, Zhang L, Zhou Y, Li CP, Jiang HL, Chen KX, Liu H. Chem. Commun. 2012; 48: 2909
    • 9j Saha D, Adak L, Mukherjee M, Ranu BC. Org. Biomol. Chem. 2012; 10: 952
    • 9k Liu L, Li J, Xu J, Sun JT. Tetrahedron Lett. 2012; 53: 6954
    • 9l Azath IA, Suresh P, Pitchumani K. New J. Chem. 2012; 36: 2334
    • 9m Tian XZ, Sun YP, Dong CH, Zhang KX, Liang TF, Zhang Y, Hou CD. Chem. Lett. 2012; 41: 719
  • 10 Li Z, Shi SY, Yang JY. Synlett 2006; 2495
    • 11a Ren YL, Dong CH, Zhao S, Sun YP, Wang JJ, Ma JY, Hou CD. Tetrahedron Lett. 2012; 53: 2825
    • 11b Ren YL, Yan MJ, Zhao S, Sun YP, Wang JJ, Yin WP, Liu ZF. Tetrahedron Lett. 2011; 52: 5107
  • 12 Saha D, Adak L, Mukherjee M, Ranu BC. Org. Biomol. Chem. 2012; 10: 952
  • 13 Zhao ZX, Li Z. J. Braz. Chem. Soc. 2011; 22: 148
  • 14 Zhou W, Chen W, Wang L. Org. Biomol. Chem. 2012; 10: 4172
    • 16a Li Z, Ma YH, Xu J, Shi JH, Cai HF. Tetrahedron Lett. 2010; 51: 3922
    • 16b Hu XC, Ma YH, Li Z. J. Organomet. Chem. 2012; 705: 70
    • 16c Li Z, Niu PX, Li RZ, Zhang YP, Ma B, Yang JY. J. Chem. Res. 2012; 36: 709
    • 16d Li Z, Li RZ, Zheng HH, Wen F, Li HB, Yin JJ, Yang JY. J. Braz. Chem. Soc. 2013; 24: 1739
    • 17a Li Z, Liu CH, Zhang YP, Li RZ, Ma B, Yang JY. Synlett 2012; 2567
    • 17b Li Z, Zhang YP, Wen F, Yin JJ, Zheng HH, Li HB, Yang JY. J. Chem. Res. 2013; 37: 601
    • 18a Nanjundaswamy HM, Pasha MA. Synth. Commun. 2007; 37: 3417
    • 18b Safari J, Gandomi-Ravandi S. Synth. Commun. 2011; 41: 645
    • 18c Tang WX, Tong AJ, Xiang Y. J. Org. Chem. 2009; 74: 2163
  • 19 Monohydrocyanation of Azines; General Procedure: A mixture of K4[Fe(CN)6] (0.2 mmol) and benzoyl chloride (1.2 mmol) was heated at 160 °C for 3 h. After the reaction system was cooled to room temperature, azine (1 mmol) in methanol (20 mL) was added. The resulting mixture was further stirred at 60 °C for the appropriate time indicated in Table 2. After completion of the reaction, monitored by TLC, the resulting mixture was filtered to remove the solids, the liquor was concentrated, and the residue was subjected to alkaline Al2O3 column chromatography (PE–EtOAc, 30:1) to give the pure product. The analytical data for representative products are given. (E)-2-(2-Benzylidenehydrazinyl)-2-phenylacetonitrile (2a): White solid; mp 100–102 °C. IR (KBr): 3241 (NH), 2226 (CN) cm–1. 1H NMR (CDCl3, 400 MHz): δ = 7.77 (s, 1 H, CH), 7.60–7.63 (m, 4 H, ArH), 7.44–7.46 (m, 3 H, ArH), 7.36–7.38 (m, 3 H, ArH), 5.53 (s, 1 H, CH). 13C NMR (CDCl3, 100 MHz): δ = 143.4, 134.2, 132.6, 129.5, 129.4, 129.1, 128.6, 127.7, 126.7, 118.5, 55.8 ppm. (Z)-3,4,5,6-Tetrahydro-2H-1,2-diazepine-3-carbonitrile (2m): White solid; mp 240–242 °C. IR (KBr): 3176 (NH), 2226 (CN) cm–1. 1H NMR (CDCl3, 400 MHz): δ = 4.04–4.06 (m, 1 H, CH), 3.58–3.60 (m, 1 H, CH), 2.97 (s, 1 H, NH), 1.69–1.99 (m, 6 H, CH2). 13C NMR (CDCl3, 100 MHz,): δ = 115.9, 75.2, 53.8, 28.6, 28.0, 19.4.