Synlett 2014; 25(11): 1616-1620
DOI: 10.1055/s-0033-1339123
letter
© Georg Thieme Verlag Stuttgart · New York

New Synthetic Approach to C5-Hydroxymethyl-Substituted Polyhydroxylated Pyrrolizidines

Daniela Beňadiková
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Michal Medvecký
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Alexandra Filipová
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Ján Moncoľ
b   Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
,
Milan Gembický
c   Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373, USA
,
Naďa Prónayová
d   Institute of Analytical Chemistry, Department of NMR Spectroscopy and Mass Spectrometry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
,
Robert Fischer*
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
› Author Affiliations
Further Information

Publication History

Received: 20 March 2014

Accepted after revision: 21 April 2014

Publication Date:
03 June 2014 (online)


Abstract

A new approach to C5-hydroxymethyl-substituted pyrrolizidines involving 1,3-dipolar cycloaddition of a d-mannose-derived cyclic nitrone and the SN-reaction of a silyl ketene acetal is presented. The synthesis shows good stereoselectivity as a result of the presence of a dioxolane substituent at C5 of the nitrone, the bulkiness of the silyl ketene acetal, and the shape of the pyrrolizidinylium intermediate formed during intramolecular reductive amination. This approach provides access to pyrrolizidines with the same relative configuration as that found in hyacinthacines C2 and C3, and in (+)-pochonicine.

 
  • References

    • 1a Asano N, Kuroi H, Ikeda H, Kizu H, Kameda Y, Kato A, Adachi I, Watson AA, Nash RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1
    • 1b Asano N, Nash RJ, Molyneux RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
    • 1c Compain P, Martin OR. Bioorg. Med. Chem. 2001; 9: 3077
    • 1d Watson AA, Fleet GW. J, Asano N, Molyneux RJ, Nash RJ. Phytochemistry 2001; 56: 265
    • 1e Iminosugars: From Synthesis to Therapeutic Applications . Compain P, Martin OR. Wiley; Chichester: 2007
    • 1f Asano N In Modern Alkaloids: Structure, Isolation, Synthesis and Biology: Fattorusso E. Taglialatela-Scafati O. Wiley-VCH; Weinheim: 2008
    • 1g Winchester BG. Tetrahedron: Asymmetry 2009; 20: 645
    • 1h Gloster TM, Davies GJ. Org. Biomol. Chem. 2010; 8: 305
    • 1i Best D, Wang C, Weymouth-Wilson AC, Clarkson RA, Wilson FX, Nash RJ, Miyauchi S, Kato A, Fleet GW. J. Tetrahedron: Asymmetry 2010; 21: 311
    • 1j Horne G, Wilson FX. Prog. Med. Chem. 2011; 50: 135
    • 1k Nash RJ, Kato A, Yu C.-Y, Fleet GW. J. Future Med. Chem. 2011; 3: 1513
    • 1l Gloster TM. Biochem. Soc. Trans. 2012; 40: 913 ; and references cited therein
    • 2a Davis BJ. Tetrahedron: Asymmetry 2009; 20: 652
    • 2b Tamayo JA, Franco F, Lo Re D, Sánchez-Cantalejo F. J. Org. Chem. 2009; 74: 5679
    • 2c Affolter O, Baro A, Frey W, Laschat S. Tetrahedron 2009; 65: 6626
    • 2d Ribes C, Falomir E, Carda M, Marco JA. Tetrahedron 2009; 65: 6965
    • 2e Izquierdo I, Plaza M, Tamayo JA, Franco F, Sánchez-Cantalejo F. Tetrahedron 2010; 66: 3788
    • 2f Tamayo JA, Franco F, Sánchez-Cantalejo F. Tetrahedron 2010; 66: 7262
    • 2g Delso I, Tejero T, Goti A, Merino P. Tetrahedron 2010; 66: 1220
    • 2h Ritthiwigrom T, Nash RJ, Pyne SG. Tetrahedron 2010; 66: 9340
    • 2i Garrabou X, Gómez L, Joglar J, Gil S, Parella T, Bujons J, Clapés P. Chem. Eur. J. 2010; 16: 10691
    • 2j Bonaccini C, Chioccioli M, Parmeggiani C, Cardona F, Lo Re D, Soldaini G, Vogel P, Bello C, Goti A, Gratteri P. Eur. J. Org. Chem. 2010; 5574
    • 2k Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE. Org. Lett. 2011; 13: 1594
    • 2l Tamayo JA, Franco F, Sánchez-Cantalejo F. Eur. J. Org. Chem. 2011; 7182
    • 2m D’Adamio G, Goti A, Parmeggiani C, Moreno-Clavijo E, Robina I, Cardona F. Eur. J. Org. Chem. 2011; 7155
    • 2n Gkizis P, Argyropoulos NG, Coutouli-Argyropoulou E. Tetrahedron 2013; 69: 8921
    • 2o Martella D, Cardona F, Parmeggiani C, Franco F, Tamayo JA, Robina I, Moreno-Clavijo E, Moreno-Vargas AJ, Goti A. Eur. J. Org. Chem. 2013; 4047
    • 2p Marjanovic J, Divjakovic V, Matovic R, Ferjancic Z, Saicic RN. Eur. J. Org. Chem. 2013; 5555
    • 2q Rajender A, Rao JP, Rao BV. Eur. J. Org. Chem. 2013; 1749
    • 2r Xu W.-Y, Iwaki R, Jia Y.-M, Zhang W, Kato A, Yu C.-Y. Org. Biomol. Chem. 2013; 11: 4622 ; and references cited therein
    • 3a Kato A, Kato N, Adachi I, Hollinshead J, Fleet GW. J, Kuriyama C, Ikeda K, Asano N, Nash RJ. J. Nat. Prod. 2007; 70: 993
    • 3b Sengoku T, Satoh Y, Takahashi M, Yoda H. Tetrahedron Lett. 2009; 50: 4937
  • 4 Usuki H, Toyo-oka M, Kanzaki H, Okuda T, Nitoda T. Bioorg. Med. Chem. 2009; 17: 7248
  • 5 Kitamura Y, Koshino H, Nakamura T, Tsuchida A, Nitoda T, Kanzaki H, Matsuoka K, Takahashi S. Tetrahedron Lett. 2013; 54: 1456
  • 6 Zhu J.-S, Nakagawa S, Chen W, Adachi I, Jia Y.-M, Hu X.-G, Fleet GW. J, Wilson FX, Nitoda T, Horne G, van Well R, Kato A, Yu C.-Y. J. Org. Chem. 2013; 78: 10298
    • 7a Fišera L In Heterocycles from Carbohydrate Precursors . El Ashry ES. H. Springer; Berlin: 2007: 287
    • 7b Dugovič B, Fišera L, Reißig H.-U. Eur. J. Org. Chem. 2008; 277
    • 8a Rehák J, Fišera L, Kožíšek J, Bellovičová L. Tetrahedron 2011; 67: 5762
    • 8b Podolán G, Kleščíková L, Fišera L, Kožíšek J, Fronc M. Synlett 2011; 1668
    • 8c Podolán G, Fišera L, Kožíšek J, Fronc M. Heterocycles 2012; 84: 683
    • 9a Brandi A, Cardona F, Cicchi S, Cordero FM, Goti A. Chem. Eur. J. 2009; 15: 7808
    • 9b Carmona AT, Whigtman RH, Robina I, Vogel P. Helv. Chim. Acta 2003; 86: 3066
    • 9c Toyao A, Tamura O, Takagi H, Ishibashi H. Synlett 2003; 35
    • 9d Cardona F, Parmeggiani C, Faggi E, Bonaccini C, Gratteri P, Sim L, Gloster TM, Roberts S, Davies GJ, Rose DR, Goti A. Chem. Eur. J. 2009; 15: 1627
  • 10 Holzapfel CW, Crous R. Heterocycles 1998; 48: 1337
    • 12a Narasaka K, Ichikawa Y.-i, Kubota H. Chem. Lett. 1987; 16: 2139
    • 12b Ichikawa Y.-i, Kubota H, Fujita K, Okauchi T, Narasaka K. Bull. Chem. Soc. Jpn. 1989; 62: 845
    • 12c Mukaiyama T, Uchiro H, Hirano N, Ishikawa T. Chem. Lett. 1996; 25: 629
  • 13 Malhiac C, Tekin J, Ramiandrasoa G, Leveque H, Combret J.-C. Phosphorus, Sulfur Silicon Relat. Elem. 1995; 102: 127
  • 14 Methyl (±)-(2-Benzyl-3-phenylisoxazolidin-5-yl)(dimethoxy)acetate (6a); Typical Procedure The reaction flask was charged with 5-acetoxyisoxazolidines 4a,b (1.13 g, 3.80 mmol), sealed with a rubber septum, and filled with argon. Anhydrous CH2Cl2 (8 mL) was added and the solution was cooled to –80 °C. Silyl ketene acetal 5 (1.57 g, 7.61 mmol) and TMSOTf (0.69 mL, 3.80 mmol) were added successively and the mixture was stirred at –80 °C for 1 h. When the starting material had disappeared (TLC; hexanes–EtOAc, 70:30), the reaction was quenched by adding sat. aq NaHCO3 (10 mL). The mixture was allowed to warm to r.t., CH2Cl2 (10 mL) was added, and the mixture was vigorously stirred for 5 min. The organic layer was then separated and the aqueous layer was extracted with CH2Cl2 (2 × 10 mL). The organic layers were combined, washed with H2O, dried (Na2SO4), filtered, and concentrated in vacuo. Column chromatography [silica gel, hexanes–EtOAc (80:20)] gave a colorless solid; yield: 0.95 g (2.56 mmol, 67%); mp 78–80 °C (hexanes); 1H NMR (600 MHz, CDCl3): δ = 2.63 (ddd, J = 12.8, 8.4, 7.1 Hz, 1 H, H-4a), 2.75 (ddd, J = 12.8, 10.2, 7.0 Hz, 1 H, H-4b), 3.28 (s, 3 H, OCH3), 3.41 (s, 3 H, OCH3), 3.61 (s, 3 H, OCH3), 3.68–3.73 (m, 2 H, H-3, CH2Ph), 3.94 (d, J = 14.5 Hz, 1 H, CH2Ph), 4.52 (dd, J = 8.4, 7.0 Hz, 1 H, H-5), 7.17–7.41 (m, 10 H, Ph); 13C NMR (150.1 MHz, CDCl3): δ = 39.8, 50.4, 50.8, 52.7, 59.2, 70.0, 76.8, 102.0, 127.0, 127.9 (2 C), 128.0, 128.6, 129.5, 136.9, 138.4, 167.9.
  • 15 Tamura O, Toyao A, Ishibashi H. Synlett 2002; 1344
    • 16a Masson G, Cividino P, Py S, Vallée Y. Angew. Chem. Int. Ed. 2003; 42: 2265
    • 16b Kaliappan KP, Das P, Chavan ST, Sabharwal SG. J. Org. Chem. 2009; 74: 6266
    • 16c Li X, Qin Z, Wang R, Chen H, Zhang P. Tetrahedron 2011; 67: 1792
    • 16d Bandaru A, Kaliappan KP. Synlett 2012; 23: 1473
    • 16e Fu Y, Liu Y, Chen Y, Hügel HM, Wang M, Huang D, Hu Y. Org. Biomol. Chem. 2012; 10: 7669
    • 16f Kui EL, Kanazawa A, Poisson J.-F, Py S. Tetrahedron Lett. 2013; 54: 5103
    • 16g Khangarot RK, Kaliappan KP. Eur. J. Org. Chem. 2013; 2692
  • 17 Crystallographic Data Collection and Refinement X-ray data were collected on a Bruker Kappa APEX Ultra diffractometer with mirror-monochromated Cu Kα radiation with a rotating anode Nonius FR951 at 100 K. The structure was solved by direct methods using SHELXS-97 [see ref. 20a], refined by a full-matrix least-squares procedure with CRYSTALS [ver. 14.43; see ref. 20b], and drawn with the OLEX2 package [see ref. 20c]. The chirality of carbon atoms was confirmed by using the PLATON program [see ref. 20d] for C1(S), C3(S), C4(R), C5(S), C6(S), and C7(S). X-ray Data for C16H25NO7 (8a) Monoclinic, space group, P21, a = 8.6080(5), b = 9.8526(6), c = 10.6718(6) Å, β = 103.018(2)°, V = 881.83(9) Å3, Z = 2; final R = 0.0255, R w = 0.0657, S = 1.004, Flack parameter –0.03(12); maximum and minimum residual densities 0.15 and –0.15 eÅ–3, respectively. Crystallographic data for compound 8a have been deposited with accession number CCDC 883297, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 18 Methyl {(3aS,4S,7S,8aS,8bR)-4-[(4S)-2,2-Dimethyl-1,3-dioxolan-4-yl]-2,2-dimethylhexahydro[1,3]dioxolo[3,4]-pyrrolo[1,2-b]isoxazol-7-yl}(dimethoxy)acetate (9) Colorless oil; yield: 430 mg (69%); [α]D 20 +59.80 (c 0.99, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 1.29 (s, 6 H, 2 × CH3), 1.34 (s, 3 H, CH3), 1.47 (s, 3 H, CH3), 2.62 (ddd, J = 12.8, 8.9, 1.3 Hz, 1 H, H-3a), 2.81 (ddd, J = 13.0, 8.3, 5.5 Hz, 1 H, H-3b), 3.30 (s, 3 H, OCH3), 3.40 (s, 3 H, OCH3), 3.77–3.68 (m, 2 H, H-6, H-3a), 3.82 (s, 3 H, OCH3), 3.96 (d, J = 7.1 Hz, 2 H, H-5′a,b), 4.24 (td, J = 7.1, 2.8 Hz, 1 H, H-4′), 4.42 (dd, J = 8.9, 5.5 Hz, 1 H, H-2), 4.66 (dd, J = 5.4, 6.1 Hz, 1 H, H-4), 4.82 (dd, J = 6.3, 1.4 Hz, 1 H, H-5). 13C NMR (150.1 MHz, CDCl3): δ = 24.4, 25.0, 26.0, 26.5, 31.0, 50.3, 50.7, 52.9, 66.2, 69.6, 71.7, 76.4, 77.1, 83.1, 86.1, 101.8, 109.5, 112.9, 167.6.
  • 19 (1S)-1-[(3aS,4S,6S,7S,8aS,8bR)-7-Hydroxy-6-(hydroxy-methyl)-2,2-dimethylhexahydro-4H-[1,3]dioxolo[4,5-a]-pyrrolizin-4-yl]ethane-1,2-diol (13): Selected NMR Data 1H NMR (600 MHz, CDCl3): δ = 1.35 (s, 3 H, CH3), 1.57 (s, 3 H, CH3), 2.06 (td, J = 14.1, 3.7 Hz, 1 H, H-7b), 2.26 (ddd, J = 14.1, 7.7, 6.4 Hz, 1 H, H-7a), 3.43 (dd, J = 10.5, 4.9 Hz, 1 H, H-5), 3.56 (dd, J = 9.7, 4.7 Hz, 1 H, H-1′), 3.64 (dd, J = 11.5, 4.7 Hz, 1 H, H-2′a), 3.68 (d, J = 4.7 Hz, 1 H, H-3), 3.71 (dd, J = 11.5, 4.7 Hz, 1 H, H-2′b), 3.82–3.87 (m, 2 H, H-7a, CH2OH), 3.97 (dd, J = 12.3, 4.7 Hz, 1 H, CH2OH), 4.35 (dd, J = 9.7, 5.0 Hz, 1 H, H-6), 4.59 (t, J = 5.2 Hz, 1 H, H-1), 4.73 (dd, J = 5.7, 1.3 Hz, 1 H, H-2). 13C NMR (150.1 MHz, CDCl3): δ = 23.7, 25.5, 33.2, 61.0, 64.2, 65.3, 66.1, 66.6, 73.0, 74.0, 82.4, 86.9, 112.8.
    • 20a Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
    • 20b Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. J. Appl. Crystallogr. 2003; 36: 1487
    • 20c Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339
    • 20d Spek AL. Acta Crystallogr., Sect. D 2009; 65: 148