Adhesive Immobilization of Polymer-Stabilized Pd Nanoparticles on Cellulose

Significance: Adhesive immobilization of palladium nanoparticles on cellulose using hyperbranched polystyrenes [Pd@HPS-N(C\(_{12}H_{25}\)]Cl on cellulose] was developed. The catalyst promoted efficiently the Suzuki–Miyaura coupling, the Mizoroki–Heck reaction, the intramolecular C–H bond arylation, and the hydrogenation. The catalyst was recycled by a tweezers and reused several times.

Comment: The catalyst was prepared as follows: A reaction of the hyperbranched polystyrenes having tri(dodecyl)ammonium chloride moieties [HPS-N(C\(_{12}H_{25}\)]Cl] with Pd\(_{2}(\text{dba})_{3}\) was carried out to give the polymer-supported palladium nanoparticles Pd@HPS-N(C\(_{12}H_{25}\)]Cl. The resulting nanocomposite Pd@HPS-N(C\(_{12}H_{25}\)]Cl was treated with KI and filter paper (or cotton) as cellulose to afford Pd@HPS-N(C\(_{12}H_{25}\)]Cl on cellulose.