Synlett 2014; 25(11): 1561-1564
DOI: 10.1055/s-0033-1339030
letter
© Georg Thieme Verlag Stuttgart · New York

Indium-Mediated Debromination of gem-Bromonitroalkanes under Mild Conditions in Aqueous Medium

Rita C. Acúrcio
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt   Email: rsoengas@ua.pt
,
Raquel G. Soengas*
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt   Email: rsoengas@ua.pt
,
Artur M. S. Silva*
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370084   Email: artur.silva@ua.pt   Email: rsoengas@ua.pt
› Author Affiliations
Further Information

Publication History

Received: 15 March 2014

Accepted after revision: 08 April 2014

Publication Date:
13 May 2014 (online)


Abstract

gem-Bromonitroalkanes are efficiently reduced into the corresponding dehalogenated products in excellent yields with indium metal in the presence of a palladium(0) catalyst and indium(III) chloride in aqueous medium. The addition of bromonitromethane to carbohydrate-derived aldehydes or imines, followed by debromination of the intermediate bromonitro compounds represents an extremely efficient method for the stereoselective preparation of nitrosugars.

Supporting Information

 
  • References

    • 1a Henry L. Bull. Soc. Chim. Fr. 1895; 13: 999
    • 1b Luzzio FA. Tetrahedron 2001; 57: 915
    • 1c Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561
    • 2a Alcaide B, Almendros P, Rodríguez-Acebes R. J. Org. Chem. 2005; 70: 2713
    • 2b Alcaide B, Almendros P, Rodríguez-Acebes R. J. Org. Chem. 2005; 70: 3198
    • 3a Knochel P, Seebach D. Synthesis 1982; 1017
    • 3b Lucet D, Sabelle S, Kostelitz O, Le Gall T, Mioskowski C. Eur. J. Org. Chem. 1999; 2583
    • 4a Lucet D, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
    • 4b Westermann B. Angew. Chem. Int. Ed. 2003; 42: 151
  • 5 Ballini R, Petrini M. Tetrahedron 2004; 60: 1017
  • 6 García-Ruano JL, López-Cantarero J, de Haro T, Alemán J, Cid MB. Tetrahedron 2006; 62: 12197
  • 7 Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 612
    • 8a Soengas RG, Acurcio R, Silva AM. S. Eur. J. Org. Chem. 2014; in press
    • 8b Inokuma T, Takemoto Y. Bromonitromethane. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2010
  • 9 Dong L.-T, Lu R.-J, Du Q.-S, Zhang J.-M, Liu S.-P, Xuan Y.-N, Yan M. Tetrahedron 2009; 65: 4124
  • 10 Blay G, Hernández-Olmos V, Pedro JR. Chem. Commun. 2008; 4840
    • 11a Soengas RG, Silva S, Estévez AM, Estévez JC, Estévez RJ, Rodríguez-Solla H. Eur. J. Org. Chem. 2012; 4339
    • 11b Dobish MC, Villalta F, Waterman MR, Lepesheva GI, Johnston JN. Org. Lett. 2012; 14: 6322
  • 12 Bowman WR, Crosby D, Westlake PJ. J. Chem. Soc., Perkin Trans 2 1991; 73
    • 13a Soengas RG, Estévez AM. Eur. J. Org. Chem. 2010; 5190
    • 13b Soengas RG, Estévez AM. Synlett 2011; 2625
    • 13c Soengas RG, Silva AM. S. Synlett 2012; 23: 873
    • 13d Rodríguez-Solla H, Concellón C, Alvaredo N, Soengas RG. Tetrahedron 2012; 68: 1736
    • 13e Soengas RG, Silva AM. S. Tetrahedron 2013; 69: 3425
    • 13f Soengas RG, Silva AM. S. Tetrahedron Lett. 2013; 54: 2156
    • 13g Soengas RG, Rodríguez-Solla H, Silva AM. S, Llavona R, Paz FA. A. J. Org. Chem. 2013; 78: 12831
    • 14a Soengas RG. Tetrahedron Lett. 2010; 51: 105
    • 14b Soengas RG. Tetrahedron: Asymmetry 2010; 21: 2249
    • 14c Soengas RG, Estévez AM. Synlett 2011; 2625
    • 14d Soengas RG. Synlett 2011; 2549
    • 14e Soengas RG, Segade Y, Jiménez C, Rodríguez J. Tetrahedron 2011; 67: 2617
    • 14f Soengas RG. Ultrason. Sonochem. 2012; 19: 916

      For reviews on indium chemistry, see:
    • 15a Cintas P. Synlett 1995; 1089
    • 15b Li CJ. Tetrahedron 1996; 52: 5643
    • 15c Marshall JA. Chemtracts Org. Chem. 1997; 10: 481
    • 15d Li CJ In Green Chemistry, Frontiers in Benign Chemical Syntheses and Processes . Anastas P, Williamson TC. Oxford University Press; New York: 1998. Chap. 14
    • 15e Paquette LA In Green Chemistry, Frontiers in Benign Chemical Syntheses and Processes . Anastas P, Williamson TC. Oxford University Press; New York: 1998. Chap. 15
    • 15f Li C.-J, Chan T.-H. Tetrahedron 1999; 55: 11149
    • 15g Ranu BC. Eur. J. Org. Chem. 2000; 2347
    • 15h Podlech J, Maier TC. Synthesis 2003; 63

      Allylations:
    • 16a Araki S, Kamei T, Hirashita T, Yamamura H, Kawai M. Org. Lett. 2000; 2: 847
    • 16b Tan K.-T, Chang S.-S, Cheng H.-S, Loh T.-P. J. Am. Chem. Soc. 2003; 125: 2958
    • 16c Propargylations: Isaac MB, Chan T.-H. J. Chem. Soc., Chem. Commun. 1995; 1003
    • 16d Alkynylations: Augé J, Lubin-Germain N, Seghrouchni L. Tetrahedron Lett. 2002; 43: 5255

    • Nitromethylations:
    • 16e Soengas RG, Estévez AM. Tetrahedron Lett. 2012; 53: 570
    • 16f Rodríguez-Solla H, Soengas RG, Alvaredo N. Synlett 2012; 23: 2083 ; and reference 10a
  • 17 Augé J, Lubin-Germain N, Uziel J. Synthesis 2007; 1739
    • 18a Podlech J, Maier TC. Synthesis 2003; 633
    • 18b Ranu BC, Dutta P, Sarkar A. J. Chem. Soc., Perkin Trans. 1 1999; 1139
  • 19 A similar system was used for the reductive elimination of halohydrins, see: Cho S, Kang S, Keum G, Kang SB, Han S.-Y, Kim Y. J. Org. Chem. 2003; 68: 180
  • 20 Nitroalkanes 2; General Procedure NaI (0.12 mmol, 0.15 equiv) was added to a stirred solution of bromonitromethane (0.8 mmol, 1 equiv) and the corresponding aldehyde 3 (0.8 mmol, 1 equiv) in THF (10 mL), and the resulting mixture was stirred at r.t. for 5 h. After this period, the mixture was quenched with aq HCl (10 mL, 0.1 M) and extracted with Et2O (1 × 20 mL). The combined extracts were washed with sat. aq Na2S2O3 solution (1 × 20 mL), dried over Na2SO4, filtered and the solvent removed under reduced pressure to afford the crude 1-bromo-1-nitroalkan-2-ol. In metal (183 mg, 1.6 mmol), InCl3 (88 mg, 0.4 mmol) and Pd(PPh3)4 (18 mg, 2 mol%) were added to a solution of the 1-bromo-1-nitroalkan-2-ol (0.8 mmol) in THF–H2O (2:1, 6 mL). After stirring the mixture at r.t. for 12 h, it was quenched with HCl (3 mL, 1 M), diluted with H2O (25 mL) and extracted with Et2O (3 × 25 mL). The combined organic extracts were dried over Na2SO4, filtered and the solvent removed under reduced pressure to afford the nitroalkanes 2.
  • 21 1-Cyclohexyl-2-nitroethanol (2a) Yellow oil; Rf  = 0.30 (hexane–EtOAc, 5:1). 1H NMR (300 MHz, CDCl3): δ = 4.45–4.33 (2 m, 3 H), 1.73–0.90 (m, 11 H). 13C NMR (75 MHz, CDCl3): δ = 79.3, 72.8, 41.4, 27.9, 26.1, 25.9, 25.7, 22.8.
  • 22 Concellón JM, Rodríguez-Solla H, Concellón C, García-Granda S, Díaz MR. Org. Lett. 2006; 8: 5979
  • 23 N-(1-Cyclohexyl-2-nitroethyl)-4-methoxybenzenamine (2e) Brown oil; Rf  = 0.22 (hexane–EtOAc, 3:1). 1H NMR (300 MHz, CDCl3): δ = 6.76 (d, J = 9.0 Hz, 2 H), 6.65 (d, J = 9.0 Hz, 2 H), 4.72 (dd, J = 12.3, 5.2 Hz, 1 H), 4.46 (dd, J = 12.3, 7.4 Hz, 1 H), 4.08–4.04 (m, 1 H), 3.73 (s, 3 H), 2.73 (s, 11 H). 13C NMR (75 MHz, CDCl3): δ = 152.7 (C), 141.0 (C), 115.0 (2 × CH), 114.9 (2 × CH), 75.7 (CH2), 60.9 (CH), 55.7 (CH3), 43.0 (CH), 34.7 (2 × CH2), 25.2 (CH2), 21.6 (2 × CH2). MS (ESI): m/z (%) = 279 (6) [M + H]+, 234 (19), 216 (100), 214 (28). HRMS (ESI): m/z [M + H]+ calcd for C15H23N2O3: 279.1709; found: 279.1703.
  • 24 7-Deoxy-1,2:3,4-di-O-isopropylidene-7-nitro-d-glycero-β-d-galacto-heptopyranose (2g) Yellow oil; Rf  = 0.20 (hexane–EtOAc, 3:1); [α]D 20 –49.4 (c 0.6, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 5.49 (d, J = 5.0 Hz, 1 H), 4.78 (apparent d, J = 11.2 Hz, 1 H), 4.65 (dd, J = 8.0, 2.5 Hz, 1 H), 4.51–4.47 (m, 2 H), 4.43 (dd, J = 8.0, 2.0 Hz, 1 H), 4.34 (dd, J = 4.9, 2.5 Hz, 1 H), 3.73 (dd, J = 8.2, 2.0 Hz, 1 H), 2.89 (d, J = 5.9 Hz, 1 H), 1.51 (s, 3 H, CH 3), 1.46 (s, 3 H, CH 3), 1.37 (s, 3 H, CH 3), 1.32 (s, 3 H, CH 3). 13C NMR (75 MHz, CDCl3): δ = 109.6, 108.9, 96.2, 78.1, 70.6, 70.5, 70.1, 67.7, 67.4, 25.9, 24.8, 24.3. MS (ESI): m/z (%) = 342 (24) [M + Na]+, 337 (100) [M + NH4]+, 320 (19) [M + H]+, 262 (48).