Synlett 2013; 24(11): 1399-1404
DOI: 10.1055/s-0033-1338954
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective or Exclusive Synthesis of Ethyl (Z)-2-(2-Substituted-thiazol-4-yl)pent-2-enoates from Ethyl (E/Z)-2-(2-Bromoacetyl)pent-2-enoate

Jiao-Jiao Zhai
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Jian-An Jiang
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Shun-Li Zhang
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Cheng Chen
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Hong-Wei Liu
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Dao-Hua Liao
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
,
Ya-Fei Ji*
School of Pharmacy, East China University of Science & Technology, Campus P. O. Box 363, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253314   Email: jyf@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 15 March 2013

Accepted after revision: 24 April 2013

Publication Date:
05 June 2013 (online)


Abstract

A stereoselective or exclusive approach to a series of ethyl (Z)-2-(2-substituted-thiazol-4-yl)pent-2-enoates from ethyl (E/Z)-2-(2-bromoacetyl)pent-2-enoate and thioureas or thioamides was reported in good yields. This approach involves a quaternary carbon stereocontrolled cis-configuration formation, and opportunely blocking a potential E/Z isomerization. The practical applicability was highlighted by the synthesis of (Z)-2-(2-tert-butoxycarbonylaminothiazol-4-yl)pent-2-enoic acid, a commercially important side-chain material of cefcapene pivoxil, in a two-step procedure.

Supporting Information

 
  • References and Notes

    • 1a Jagodzinski TS. Chem. Rev. 2003; 103: 197
    • 1b Dondoni A, Marra A. Chem. Rev. 2004; 104: 2557
    • 1c Li J.-J, Corey EJ. Name Reactions in Heterocyclic Chemistry . John Wiley and Sons; Hoboken: 2005: 275
    • 1d Lafontaine JA, Day RF, Dibrino J, Hadcock JR, Hargrove DM, Linhares M, Martin KA, Maurer TS, Nardone NA, Tess DA, DaSilva-Jardine P. Bioorg. Med. Chem. Lett. 2007; 17: 5245
    • 1e Wang W.-L, Chai SC, Huang M, He H.-Z, Hurley TD, Ye Q.-Z. J. Med. Chem. 2008; 51: 6110
    • 1f Gaumont A.-C, Gulea M, Levillain J. Chem. Rev. 2009; 109: 1371
    • 1g Quin LD, Tyrell JA. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals. John Wiley and Sons; Hoboken: 2010: 228
    • 2a Miyamoto K, Nishi Y, Ochiai M. Angew. Chem. Int. Ed. 2005; 44: 6896
    • 2b Das B, Reddy VS, Ramu R. J. Mol. Catal. A: Chem. 2006; 252: 235
    • 2c Potewar TM, Ingale SA, Srinivasan KV. Tetrahedron 2007; 63: 11066
    • 2d Zhu D, Chen J, Wu D, Liu M, Ding J, Wu H. J. Chem. Res. 2009; 84
    • 2e Kumar D, Kumar NM, Patel G, Gupta S, Varma RS. Tetrahedron Lett. 2011; 52: 1983
    • 3a Yamanaka H, Kawabata K, Miyai K, Takasugi H, Kamimura T, Mine Y, Takaya T. J. Antibiotics 1986; 39: 101
    • 3b Jursic B, Sunko DE, Ladika M. Tetrahedron 1987; 43: 4367
    • 3c Nishide K, Yamamura M, Yamazaki M, Kobori T, Tunemoto D, Kondo K, Sato K. Chem. Pharm. Bull. 1988; 36: 2346
    • 3d Yamada H, Ueda S, Mutoh M, Nagata H, Nouda H, Fukasawa M, Okuda T. J. Antibiotics 1990; 43: 578
    • 3e Salomon CJ, Mata EG, Mascaretti OA. Tetrahedron Lett. 1991; 32: 4239
    • 3f Yamamoto H, Eikyu Y, Okuda S, Kawabata K, Takasugi H, Tanaka H, Matsumoto S, Matsumoto Y, Tawara S. Bioorg. Med. Chem. 2002; 10: 1535
    • 4a Ishikura K, Kubota T, Minami K, Hamashima Y, Nakashimizu H, Motokawa K, Yoshida T. J. Antibiotics 1994; 47: 453
    • 4b Tanaka M, Matsuda K. JP 05213968A, 1994 ; Chem. Abstr. 1994, 120, 134147
    • 4c Matsunaga T, Hirota Y, Iwasaki F. JP 2002030078A, 2002 ; Chem. Abstr. 2002, 136, 134755
    • 4d Desphande PB, Sahoo PK, Sharma HC, Nayal SS. IN 194929A1, 2006 ; Chem. Abstr. 2006, 146, 62701
    • 4e Sahoo PK, Sreedhar G, Kamma R, Senthilkumar UP. P. IN 2006CH02154A, 2008 ; Chem. Abstr. 2008, 150, 329475
    • 4f Senthilkumar UP, Sreedhar G, Kamma R. IN 2007CH00299A, 2008 ; Chem. Abstr. 2008, 150, 329477
    • 4g Gedi S, Ramakrishna K, Udayampalayam PS. WO 2008155615A2, 2008 ; Chem. Abstr. 2008, 150, 77403
  • 5 Ishikura K, Kubota T, Minami K, Hamashima Y, Nakashimizu H, Motokawa K, Kimura Y, Miwa H, Yoshida T. J. Antibiotics 1994; 47: 466
  • 6 Jiang J.-A, Zhai J.-J, Yu X.-H, Teng X, Ji Y.-F. Synthesis 2012; 44: 207
  • 7 Kubota T, Kume M. EP 0467647, 1992 ; Chem. Abstr. 1992, 116, 235340
    • 8a Bhatia SH, Buckley DM, Mccabe RW, Avent A, Brown RG, Hitchcock PB. J. Chem. Soc., Perkin Trans. 1 1998; 569
    • 8b Anselmi E, Blazejewski J.-C, Wakselman C. J. Fluorine Chem. 2001; 107: 315
    • 8c Antonioletti R, Bovicelli P, Malancona S. Tetrahedron 2002; 58: 589
  • 9 1H NMR analysis indicated the obtained (E/Z)-2 in a 1.0:1.4 ratio under the reaction temperature of –30 °C.

    • It was shown that the reaction could be immediately stopped by acid-binding agent. The reaction pathway was commonly considered via a hydroxythiazoline intermediate. For the hydroxythiazoline intermediates and their acid-promoted dehydrations in Hantzsch thiazole synthesis, see:
    • 10a Lepeshkin AY, Turchin KF, Sedov AL, Velezheva VS. Russ. Chem. Bull., Int. Ed. 2007; 56: 1441
    • 10b Lepeshkin AY, Turchin KF, Galpern EG, Stankevich IV, Lyssenko KA, Velezheva VS. Russ. Chem. Bull., Int. Ed. 2007; 56: 1447
  • 11 General Procedure for the Synthesis of 4 and 5 The material (E/Z)-2 (1.25 g, 5.0 mmol) were first dissolved in CH2Cl2 (15 mL). To the solution was added a solution of 3 (5.0 mmol) in DMF (15 mL) at 0 °C, and then the mixture was stirred at the same temperature for the specified reaction time (t, see text). Thereafter, aq NaHCO3 (8%, 20 mL) was rapidly added to the mixture. The organic layer was separated, and the aq phase was extracted with CH2Cl2 (2 × 25 mL). The combined organic phase was washed with sat. brine (60 mL), dried over anhyd Na2SO4. The filtrate was concentrated to give the crude product, which was purified by column chromatography to give 4 and 5 in corresponding yields. Analytical Data for Representative Compounds 4a and 5a Compound 4a: yellow solid, mp 74–76 °C, 0.53 g (47%, neutralizing treatment at 30 min), 0.48 g (42%, t = 2 h). 1H NMR (400 MHz, CDCl3): δ = 1.07 (t, J = 7.6 Hz, 3 H), 1.34 (t, J = 7.2 Hz, 3 H), 2.35 (quint, J = 7.6 Hz, 2 H), 4.30 (q, J = 7.2 Hz, 2 H), 5.26 (br s, 2 H), 6.50 (s, 1 H), 6.69 (t, J = 7.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.8, 14.3, 23.3, 60.8, 104.9, 128.2, 140.6, 147.2, 166.9, 167.6 ppm. ESI-HRMS: m/z [M + H+] calcd for C10H15N2O2S: 227.0854; found: 227.0854. Compound 5a: yellow solid, mp 107–109 °C, 0.32 g (28%, neutralizing treatment at 30 min), 0.41 g (36%, t = 2 h). 1H NMR (400 MHz, CDCl3): δ = 1.04 (t, J = 7.6 Hz, 3 H), 1.27 (t, J = 7.2 Hz, 3 H), 2.31 (quint, J = 7.6 Hz, 2 H), 4.21 (q, J = 7.2 Hz, 2 H), 5.22 (br s, 2 H), 6.42 (s, 1 H), 6.98 (t, J = 7.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.4, 14.2, 23.2, 60.9, 108.0, 127.7, 145.0, 148.4, 166.7, 166.8 ppm. ESI-HRMS: m/z [M + H+] calcd for C10H15N2O2S: 227.0854; found: 227.0854.
  • 12 The configurations of all compounds 4 and 5 were determined by 1H-1H NOESY except 4b, 4c, and 5c for their unstability.
    • 13a Arakawa K, Miyasaka T, Ohtsuka H. Chem. Pharm. Bull. 1972; 20: 1041
    • 13b Challacombe K, Plackett SJ, Meakins GD. Tetrahedron Lett. 1987; 28: 5767
    • 13c Qiao Q, So S.-S, Goodnow RA. Jr. Org. Lett. 2001; 3: 3655
    • 13d Ochiai M, Nishi Y, Hashimoto S, Tsuchimoto Y, Chen D.-W. J. Org. Chem. 2003; 68: 7887
    • 13e Yavari I, Sayyed-Alangi SZ, Hajinasiri R, Sajjadi-Ghotbabadi H. Monatsh. Chem. 2009; 140: 209
  • 14 Preparation Procedure for the New Route to 6 Firstly, the material (E/Z)-2 (2.49 g, 10.0 mmol) were dissolved in CH2Cl2 (20 mL). To the solution was added a solution of N-tert-butoxycarbonylthiourea (3e, 1.76 g, 10.0 mmol) in DMF (20 mL) at 0 °C, and then stirred for 30 min at 0 °C. Then, aq NaHCO3 (8%, 40 mL) was rapidly added to the mixture. The organic layer was separated, and the aqueous phase was extracted with CH2Cl2 (2 × 50 mL). The combined organic phase was washed with sat. brine (100 mL), and dried over anhyd Na2SO4. The filtrate was concentrated to afford the crude product, which was purified by column chromatography on silica gel (EtOAc–PE, 1:25) to give 4e and 5e. Analytical Data for Compounds 4e and 5e Compound 4e: pale yellow oil; yield: 2.77 g (85%). 1H NMR (400 MHz, CDCl3): δ = 1.09 (t, J = 7.6 Hz, 3 H), 1.34 (t, J = 7.2 Hz, 3 H), 1.49 (s, 9 H), 2.41 (quint, J = 7.6 Hz, 2 H), 4.32 (q, J = 7.2 Hz, 2 H), 6.75 (t, J = 7.6 Hz, 1 H), 6.89 (s, 1 H), 9.06 (br s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.7, 14.3, 23.3, 28.1 (3 C), 60.8, 82.9 (w), 108.8, 127.8, 141.5, 146.1, 151.9 (w) 159.3, 167.3 ppm. ESI-HRMS: m/z [M + H+] calcd for C15H23N2O4S: 327.1379; found: 327.1373. Compound 5e: pale yellow solid; mp 69–71 °C; yield: 0.10 g (3%). 1H NMR (400 MHz, CDCl3): δ = 1.02 (t, J = 7.6 Hz, 3 H), 1.23 (t, J = 7.2 Hz, 3 H), 1.51 (s, 9 H), 2.30 (quint, J = 7.6 Hz, 2 H), 4.19 (q, J = 7.2 Hz, 2 H), 6.84 (s, 1 H), 7.04 (t, J = 7.6 Hz, 1 H), 8.87 (br s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.3, 14.2, 23.1, 28.1 (3 C), 60.9, 82.6 (w), 112.4, 127.3, 143.9, 148.7, 151.9 (w), 158.6, 166.6 ppm. ESI-HRMS: m/z [M + H+] calcd for C15H23N2O4S: 327.1379; found: 327.1381; m/z [M + Na+] calcd for C15H22N2NaO4S: 349.1198; found: 349.1194. Then, to a solution of 4e (2.61 g, 8.0 mmol) obtained above in 2-PrOH (9 mL) was added aq NaOH (7%, 15 mL), and then stirred for 1.5 h at 65 °C. The mixture was adjusted to pH 3–4 with concd HCl (36.5%, ca. 3 mL), stirred for 1 h at r.t., and then filtered. The filter cake was washed with H2O (20 mL) and dried in vacuo at 50 °C for 10 h to give 6 (2.17 g, 91%). Analytical Data for Compound 6 White solid; mp 167–169 °C; yield: 2.17 g (91%). 1H NMR (400 MHz, CDCl3): δ = 1.11 (t, J = 7.6 Hz, 3 H), 1.55 (s, 9 H), 2.67 (quint, J = 7.6 Hz, 2 H), 6.72 (t, J = 7.6 Hz, 1 H), 6.95 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.6, 23.6, 28.1 (3 C), 82.7, 109.2, 126.2, 145.7, 146.9, 152.4, 160.9, 170.9 ppm. ESI-HRMS: m/z [M + H+] calcd for C13H19N2O4S: 299.1066; found: 299.1066.