Stereoselective Synthesis of All-Carbon Tetrasubstituted Alkenes

Significance: The stereoselective synthesis of various all-carbon tetrasubstituted alkenes is disclosed, employing a two-step protocol which includes the stereoselective generation of an alkenyl pseudohalide followed by stereospecific palladium-catalyzed cross-coupling. The appropriate tetrasubstituted alkenes are obtained in good yield and with good diastereomeric ratios, providing mainly the Z-isomers.

Comment: The reaction is proposed to proceed via a ketene intermediate which is stereospecifically attacked by a lithium organyl to form the tri-substituted enolate moiety attached to a pseudohalide group [OTf or OP(O)(OR)₂]. This moiety may be converted into other functional groups by palladium-catalyzed cross-couplings to give the corresponding all-carbon tetrasubstituted alkenes.

SYNFACTS Contributors: Paul Knochel, Nadja M. Barl

SYNFACTS 2013, 9(7), 0755 Published online: 17.06.2013

DOI: 10.1055/s-0033-1338905; Reg-No.: P07313SF

Category

Metal-Mediated Synthesis

Key words

lithium, magnesium, palladium, tetrasubstituted alkenes

SYNFACTS of the month