Synthesis 2014; 46(15): 2024-2039
DOI: 10.1055/s-0033-1338658
feature article
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Chelation-Assisted Alkylation of Arenes with Primary and Secondary Alkyl Halides

Ke Gao
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +65(6791)1961   Email: nyoshikai@ntu.edu.sg
,
Takeshi Yamakawa
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +65(6791)1961   Email: nyoshikai@ntu.edu.sg
,
Naohiko Yoshikai*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +65(6791)1961   Email: nyoshikai@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 07 April 2014

Accepted after revision: 12 June 2014

Publication Date:
09 July 2014 (online)


Abstract

Cobalt–N-heterocyclic carbene catalytic systems have been developed for chelation-assisted ortho-alkylation of aromatic compounds with alkyl halides. Aryl imines can be selectively monoalkylated at room temperature by various primary or secondary alkyl chlorides or bromides. The catalytic system can also be applied to 2-arylpyridine derivatives, which in the absence of steric hindrance are amenable to dialkylation by an excess of the alkyl halide. Mechanistic experiments, including reactions of stereochemical probes and radical clocks, indicate that the reaction involves single-electron transfer from the cobalt center to the alkyl halide to form the corresponding alkyl radical, which has a finite lifetime before it undergoes C–C bond formation.

Supporting Information

 
  • References

  • 1 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529

    • For recent reviews, see:
    • 2a Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 2b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2c Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2d Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879

      For recent examples, see:
    • 3a Kakiuchi F, Kochi T, Mizushima E, Murai S. J. Am. Chem. Soc. 2010; 132: 17741
    • 3b Ilies L, Chen Q, Zeng X, Nakamura E. J. Am. Chem. Soc. 2011; 133: 5221
    • 3c Gao K, Yoshikai N. Angew. Chem. Int. Ed. 2011; 50: 6888
    • 3d Schinkel M, Marek I, Ackermann L. Angew. Chem. Int. Ed. 2013; 52: 3977
    • 3e Rouquet G, Chatani N. Chem. Sci. 2013; 4: 2201

      For branched-selective reaction with styrene derivatives, see:
    • 4a Uchimaru Y. Chem. Commun. 1999; 1133
    • 4b Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400
    • 4c Pan S, Ryu N, Shibata T. J. Am. Chem. Soc. 2012; 134: 17474
    • 4d Lee P.-S, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 1240
    • 4e Dong J, Lee P.-S, Yoshikai N. Chem. Lett. 2013; 42: 1140

      For Markovnikov-selective reaction of phenol derivatives with alkyl olefins, see:
    • 5a Lewis LN, Smith JF. J. Am. Chem. Soc. 1986; 108: 2728
    • 5b Dorta R, Togni A. Chem. Commun. 2003; 760
    • 5c Kuninobu Y, Matsuki T, Takai K. J. Am. Chem. Soc. 2009; 131: 9914
    • 5d Oyamada J, Hou Z. Angew. Chem. Int. Ed. 2012; 51: 12828
  • 6 Ackermann L. Chem. Commun. 2010; 46: 4866
    • 7a Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 7b Zhang Y.-H, Shi B.-F, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
    • 7c Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 7d Chen Q, Ilies L, Nakamura E. J. Am. Chem. Soc. 2011; 133: 428
    • 7e Ackermann L, Hofmann N, Vicente R. Org. Lett. 2011; 13: 1875
    • 7f Zhao YS, Chen G. Org. Lett. 2011; 13: 4850
    • 7g Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
    • 7h Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477

      For examples of nondirected alkylation of heteroarenes with secondary alkyl halides, see:
    • 8a Xiao B, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616
    • 8b Ren P, Salihu I, Scopelliti R, Hu X. Org. Lett. 2012; 14: 1748
  • 9 For meta-selective alkylation with secondary alkyl halides through cyclometalation process, see: Hofmann N, Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877

    • For ortho-alkylations using different sources of secondary alkyl groups, see:
    • 10a Lee D.-H, Kwon K.-H, Yi CS. J. Am. Chem. Soc. 2012; 134: 7325
    • 10b Deng G.-J, Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 6278
  • 12 Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
  • 13 Gao K, Yoshikai N. Chem. Commun. 2012; 48: 4305
  • 14 Gao K, Lee P.-S, Long C, Yoshikai N. Org. Lett. 2012; 14: 4234
  • 15 Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
  • 16 Punji B, Song WF, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
  • 17 Yang S, Li Z, Han X, He C. Angew. Chem. Int. Ed. 2009; 48: 3999
  • 18 Lee P.-S, Fujita T, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 17283
  • 19 The use of smaller amounts of Me(CH2)7Cl (1.5 equiv) and t-BuCH2MgBr (2 equiv) did not effect full conversion of the monoalkylation product formed in the first step, thereby giving the desired product in a lower yield (~30%).
    • 20a Ohmiya H, Wakabayashi K, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2207
    • 20b Ohmiya H, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 1886
    • 20c Cahiez G, Chaboche C, Duplais C, Moyeux A. Org. Lett. 2009; 11: 277

      For reviews on cobalt-catalyzed cross-coupling reactions, see:
    • 21a Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 21b Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
    • 21c Gosmini C, Bégouin JM, Moncomble A. Chem. Commun. 2008; 3221
    • 21d Yorimitsu H, Oshima K. Pure Appl. Chem. 2006; 78: 441
  • 22 Newcomb M. Tetrahedron 1993; 49: 1151
  • 23 The higher yield reported in our earlier communication (3aaf/3aaf' with 97% yield and an 88:12 ratio; see ref. 12) could not be reproduced in this study.
  • 24 Klein H.-F, Camadanli S, Beck R, Leukel D, Flörke U. Angew. Chem. Int. Ed. 2005; 44: 975
  • 25 Wakabayashi K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2001; 123: 5374
  • 26 Huynh HV, Han Y, Ho JH. H, Tan GK. Organometallics 2006; 25: 3267
    • 27a Mršić N, Minnaard AJ, Feringa BL, de Vries JG. J. Am. Chem. Soc. 2009; 131: 8358
    • 27b Gautier F.-M, Jones S, Martin SJ. Org. Biomol. Chem. 2009; 7: 229
  • 28 Mongin F, Mojovic L, Guillamet B, Trécourt F, Quéguiner G. J. Org. Chem. 2002; 67: 8991
  • 29 Yasuda M, Yamasaki S, Onishi Y, Baba A. J. Am. Chem. Soc. 2004; 126: 7186
    • 30a Jaegar DA, Ward MD, Martin CA. Tetrahedron 1984; 40: 2691
    • 30b Hochstein FA, Brown WG. J. Am. Chem. Soc. 1948; 70: 3484
    • 30c Guthrie RW, Kierstead RW, Mullin JG, Tilley JW. US 4927838, 1990
  • 31 Roberts BP, Steel AJ. J. Chem. Soc., Perkin Trans. 2 1994; 2411
  • 32 Cahiez G, Gager O, Moyeux A, Delacroix T. Adv. Synth. Catal. 2012; 354: 1519
  • 33 Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull. Chem. Soc. Jpn. 1995; 68: 62
  • 34 Savarin CG, Grisé C, Murry JA, Reamer RA, Hughes DL. Org. Lett. 2007; 9: 981
  • 35 Cahiez G, Luart D, Lecomte F. Org. Lett. 2004; 6: 4395